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Abstract— Interferometric synthetic aperture radar (InSAR)
time series analysis is a powerful technique to estimate long-term
water-level changes in wetland ecosystems. However, few studies
have applied InSAR on wetlands that are highly segmented
by canals and levees due in part to the challenge of select-
ing qualified reference points to minimize unwrapping errors,
which, by contrast, is a relatively easy task for unsegmented
wetlands. Here, we developed a new method to automatically
select the optimal reference point for InSAR time series analysis.
The method selects reference points by considering temporal
behaviors of coherence and InSAR phase connectivity from each
reference point to its wetland of interest. We tested the method
on six managed and highly segmented wetland units within
the Sacramento National Wildlife Refuge in the Central Valley,
California. We validated the InSAR measurement against water
depth gauge measurements during a low water depth (<10 cm)
period in 2017. The overall accuracy of the estimated water
depth changes achieved an RMSE of 1.49 cm. Compared with
three existing methods, our method showed significantly lower
RMSE values overall. This new automatic method enables us to
maximize the performance of InSAR to predict water depth and
could be applied to other types of InSAR applications as well.

Index Terms— Coherence, connected component, reference
point, water depths, wetland interferometric synthetic aperture
radar (InSAR).

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR) has
been successfully applied to estimate water-level variations

in both managed and natural wetlands [1], [2], [3], [4], [5],
[6]. This application of remote sensing technology is most
effective in wetlands with emergent herbaceous and woody
vegetation with vertical structures above water surfaces, which
enables double-bounce scattering [1], [2], [3]. Early studies
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used phase differences measured by a pair of SAR observa-
tions to estimate water-level change between two snapshots in
time [1], [2], [3]. To satisfy the need of wetland management
for continuous monitoring of water levels, recent studies used
advanced time series analysis, such as small baseline subsets
(SBASs), to estimate water-level variation across an extended
time window (e.g., years) [5]. One of the critical steps for
those InSAR applications is to select reference points with
high and stable coherence over time and close to the target
area, such as nearby residential areas [2]. Previous studies used
a single reference point for wetlands of interest because they
only focused on natural wetlands or managed wetland units
with limited spatial segmentation [1], [2], [3] and thus only
needed one stable point outside the wetland area.

However, the single reference point method may fail for
highly segmented wetlands with distinct hydrologic regimes
because of: 1) unwrapping errors among different wetland
units and 2) decorrelation areas of vegetation that obstruct
a coherent path from the reference location to the wetland of
interest [6]. Large magnitude of rise and fall of water depths
also causes unwrapping errors as an intrinsic InSAR limitation
regardless of reference point selection. While multisegment
processing (each segment with its own local reference point)
recently proposed by Kang et al. [7] could mitigate the
impact of decorrelation, it still requires manual reference point
selection, which can be tedious and challenging even for
experts. In addition, Cao et al. [8] and Zebker [9] proposed
using average phase for multiple high-coherence pixels located
outside of area of interest.

Our study developed an automatic reference point selection
method for multitemporal InSAR applications. The method
considers the location, coherence, and phase connectivity
between the reference and wetland unit to maximize the phase
connectivity between the two, thus minimizing the impact
of unwrapping errors. We tested the method using highly
segmented managed wetlands with areas much smaller than
those of previous studies [1], [2], [3], [4], [5], [6]. The
method builds upon the connected components from the phase
unwrapping process and can be incorporated into open-source
InSAR time series analysis packages, such as MintPy [10].
We tested the method using a C-band Sentinel-1 InSAR dataset
over six segmented wetland units, where water depth gauge
data were available, located within the Sacramento National
Wildlife Refuge (Sacramento Refuge) in the Central Valley of
California, USA [Fig. 1(a)]. This method can select an optimal
reference for each unit. We compared water depth estimates
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Fig. 1. (a) Location of the Sacramento Refuge with unit boundaries (yellow),
six units, and water gauges (white triangles). (b) Time series of daily mean
water depth of Unit 2 (left axis, blue line) and sequential InSAR coherence
(between current and following adjacent date, right axis, red dot). Shaded
areas represent InSAR processing time period.

from this automated reference point selection to water depth
estimates using three existing reference selection methods.
Since most wetlands in California are managed with limited
information on water depth, which often differs among units,
this study meets the urgent need to assist wetland resource
managers in monitoring surface water depth.

II. STUDY AREAS AND DATASETS

Managed wetlands in California provide important services,
such as supporting millions of shorebirds and waterfowl [11],
[12]. The Sacramento Refuge, primarily made up of emergent
nontidal wetlands, is located in the northern Central Valley.
The wetland hydrology is characterized by a seasonal pattern
[Fig. 1(b)] of flooding and drawdowns. The wetland units are
intentionally flooded from fall through spring, i.e., the wet
season, from October to March [11]. The source of the flood-
ing is subject to local rainfall and water allocation decisions
by refuge managers. The Sacramento Refuge wetlands are
highly segmented with a total number of 196 units across
4000 ha, with an average of ∼20 ha per unit [Fig. 1(a)].
We tested the reference point selection method using six
wetland units [Fig. 1(a)], each outfitted with a pressure trans-
ducer water-level gauge measuring subdaily water depth from
December 2016 to May 2018 (as shown in Fig. S1 for all
six units). We obtained 10-m digital terrain models (DTMs)
for each unit generated by the previous study via Real-Time
Kinematic Survey [11].

This study used 43 C-band Sentinel-1A/B interferometric
wide mode single look complex (SLC) from descending
path 114 acquired during December 24, 2016 to May 13,
2018, which overlapped with measurements of water depths
[Fig. 1(b)]. We used VV for analysis, which showed better
performance in interferometry than VH [3].

We processed the set of coregistered and unwrapped
interferograms, including unwrapped phase, coherence, and
connected components, by employing the ISCE-2 topsStack
processor and SNAPHU [13], [14], [15]. We connected each
SAR acquisition with its nearest two neighbors in time to form
interferograms. For each interferogram, we applied a Goldstein
filter with a strength of 0.8, and a multilooking with a factor of
two and six in azimuth and range directions, respectively, then
geocoded into the WGS84 coordinate system at a ∼30-m grid.
We used only the dry season when water depths were lower
than 10 cm because high water depths and high variations lead
to greater unwrapping error, which makes it difficult to test the

Fig. 2. (a) Flowchart of the five-step procedure. (b) Schematic plot for
Step 3. The search grid is centered at a pixel within the AOI (with a light
green square). Orange grids represent the extent of an AOI; purple pixels are
pixels within the AOI; blue pixels are outside of the AOI.

TABLE I
INITIAL THRESHOLD PARAMETERS USED IN THIS STUDY

method. The low water-depth period is from April to October
and varies between units (Fig. S1). We derived the relative
water depth time series from the set of interferograms [3]
using the small baseline approach implemented in the MintPy
software [10].

III. METHODOLOGY

Given an area of interest (AOI, in this case, a wetland unit),
the method automatically selects the reference point as a part
of the procedure in InSAR time series analysis. The main goal
of the method is to find optimal reference points that satisfy
three criteria: 1) located outside but close to a wetland unit;
2) have high coherence values over time; and 3) have a coher-
ent path, i.e., spatially adjacent pixels with high coherence
values, from the reference to the AOI.

Data preparation obtains several products from topsStack
processing. The unwrapped phase [the yellow rectangle in
the data preparation step of Fig. 2(a)] is not used in the
reference selection method but is used in later steps of InSAR
processing. The reference selection method also requires a
user-supplied geographic delineation of an AOI [e.g., shapefile
data, Fig. 2(a)] with the same coordinate system (WGS84) as
InSAR data. This study used the shapefile of the Sacramento
National Wildlife Refuge generated from external resources.
The method can be described as a five-step procedure as
follows, with initial values defined in Table I for the datasets
used in this study.

Step 1 labels the pixels using the AOI shapefile. Pixels
outside of the AOI are labeled as 0 and those within as 1. For
this study, selecting a reference within the AOI would cancel
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Fig. 3. Results for each step using Unit 3 as an example. (a) Percentage of
high coherence in time and the locations of manually selected and MintPy
default reference. (b) Percentage of connections to an AOI pixel (cyan dot).
(c) and (d) Selected reference candidates and connected components in
different locations. (e) Connected component based on mean coherence value
(pink color is the background with a zero value) with selected and unselected
reference points. (f) Locations of reference for each unit.

out displacement signals due to homogeneous water-level
changes in space.

Step 2 selects reference pixel candidates based on coher-
ence values in time. This step identifies pixels with spatial
coherence values greater than threshold coh_thd for more than
perc_thd of InSAR pairs [blue patches, Fig. 3(a)].

Step 3 evaluates phase connectivity using a pixel-level
iterative searching process for each pixel within an AOI. Based
on the connected component, we calculate the percentage of
InSAR pairs that the AOI pixel is connected to a reference
candidate from Step 2. For each AOI pixel, this step searches
for surrounding reference candidates within a square with a
length of edge pixels [Fig. 3(b)]. For a reference candidate
within the square [e.g., the cyan dot in Fig. 3(b)], if the
percentage of connections to the AOI pixel is greater than
a conn_perc_thd threshold, we identify it as a reference
candidate [red, yellow, and green dots in Fig. 3(b)]. As a result,
each AOI pixel has a list of reference candidates.

Step 4 selects reference points at the AOI level. To remove
noisy AOI pixels (e.g., open water), we remove AOI pixels
with less than quality_thd reference candidates. We intersect
the reference candidate lists for all remaining AOI pixels to
obtain a list of reference candidates that have high connections
with all qualified AOI pixels [Fig. 3(c)]. If this step does
not find any reference points, we decrease the perc_thd and
conn_perc_thd parameters with an increment of 0.05. Since
coherence is the priority for reference selection, parameter
tuning prioritizes decreasing conn_perc_thd.

Step 4 conducts a connected component analysis to repre-
sent different locations of clusters of the reference candidates
[Fig. 3(d)]. A min_area threshold is applied to remove clus-
ters with a low number of candidates. For each component,

Fig. 4. (a) and (b) Example of the time series of InSAR and ground reference
for Units 2 and 3, respectively. (c) Comparison between estimated water
depths and ground reference using the pixel with the lowest RMSE from
each unit.

we selected the top px_per_comp candidates with the shortest
distance to the AOI [white dots, Fig. 3(d)].

Step 5 considers a coherent path between the reference
candidates to the AOI. First, we generate a mask image
based on a mean coherence image of all InSAR pairs using
a threshold path_thd. The mask consists of 1 and 0 values,
representing mean coherence greater or smaller than path_thd,
respectively. We mark all the AOI pixels as 1 before conduct-
ing a connected component analysis for the mask image. For
the reference obtained from Step 4 sharing the same connected
component with the AOI pixels [Unit 3 and nearby component
in Fig. 3(e)], meaning a coherent path exists between the
candidate to the AOI, we select those as final reference points
and rank them by the Euclidean distance to the AOI (the top
one has the shortest distance). If the AOI is not connected
to any component, we conduct an incremental dilation (step
of 1) to surrounding pixels until the AOI is connected to a
component.

IV. RESULTS

We applied the method to each of the six wetland units in
Sacramento Refuge and calculated water depth variation based
on the selected reference points. Results from the method
showed (1) the predicted water depth from InSAR compared to
the ground reference (Fig. 4) and (2) the comparison between
our automated method and other reference points (manually or
algorithmically selected) in terms of accuracy for the estimated
water depths (Figs. 4–6).

The hydrograph of Unit 2 in the Sacramento Refuge showed
a clear seasonal pattern with low water depths from April
to October when wetlands were drawn down [Fig. 1(b)].
Coherence data also showed a seasonal pattern with low and
varying values in winter and spring when water depths were
high, whereas coherence was relatively high and stable when
water depth was low [shaded area in Fig. 1(b)], which was
consistent with a previous study [16].

A. Reference Pixel Locations

By applying our automated method, we successfully found
a reference point for each of the six units [Fig. 3(f)]. The
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Fig. 5. Comparison of spatial median RMSE for six units among automatic
and four other reference points. For MintPy default results, the color bar shows
the average and error bar shows the RMSEs from the two default references.

Fig. 6. Comparison of RMSE spatial distribution using the automatic and
manual reference.

reference points were located close to the corresponding unit,
had high coherence values in time, and high phase connec-
tivity with a coherent path to the unit. We obtained multiple
reference points for each unit and only showed the one closest
to the AOI.

The default threshold parameters worked for most of the
units with some exceptions. We tuned conn_perc_thd from
0.8 to 0.75 for Units 4 and 5 and additional tuning of perc_thd
from 0.95 to 0.9 for Unit 4 to find a reference point. We also
applied a dilation of 2 pixels for Units 1 and 3 in Step 5 to
connect the unit to a close component [e.g., Unit 3 and a
nearby component in Fig. 3(e)].

B. Validation of InSAR Estimated Water Depth

When estimating the time series of water depth, we set the
starting date as the reference date for both InSAR and gauge
water depth measurements [value of 0 for Fig. 4(a) and (b)].
Considering a gauge is located at marginal places for each unit
[Fig. 1(a)] with relatively high terrain elevation, we only used
wetland pixels with lower elevation values of the DTM than
the gauge’s elevation and, therefore, the pixel locations were
consistently flooded. The water depth change from those wet-
land pixels was assumed to be the same as the changes in the
gauge measurements considering a homogenous water surface
for a unit. We showed the 90 and 10 percentiles of unit-wide
InSAR results (using our automatic method and manual pixel)
for each SAR date [Fig. 4(a) and (b)] and selected the pixel
with the lowest RMSE for each unit [Fig. 4(c)]. Manual

selected reference has higher RMSE, which is shown in
Figs. 5 and 6. The pixels with the lowest RMSEs from each
unit showed consistent InSAR results and ground reference
with an R2 of 0.85 and RMSE of 0.77 cm [Fig. 4(c)] and
time series results showed that InSAR successfully tracked
draw-down of the flooding [Fig. 4(a) and (b)]. Considering
those results can be not representative of InSAR predictions
over other pixels in space [e.g., Fig. 4(b)], we calculated, for
each wetland unit, the spatial median of predictions for each
time point (Fig. S2), which results in an overall RMSE of
1.49 cm using the automatic method and 1.69 cm for the
manually selected reference point (results for each unit are
shown in Figs. S2 and S3).

C. Comparison With the Existing Reference Selection Method

We compared the accuracy of predicted water depths for
all six units among the automatic method (one reference for
each unit) and the other four references, including a manually
selected reference point, two points selected by the MintPy
default setting, and average phase method proposed by [8], [9]
with each reference used for six units (Fig. 5). The manually
selected point is in the western part of the study area and it
was characterized by (1) concrete road with high coherence
(95% of InSAR pairs with a coherence value greater than
0.90) and (2) high-coherence pixels on the paths to all units
[Fig. 3(a)]. The MintPy default references were selected based
on (1) minimum average coherence of 0.85 and (2) located in
the common connected component for all InSAR pairs. The
last reference used the average unwrapped phase of all pixels
outside the AOIs with coherence over 95% of time greater
than 0.90 [e.g., blue areas in Fig. 3(a) for Unit 3].

We compared the spatial median RMSE among the five
references for each unit (Fig. 5). The automatic reference
points show, in general, lower RMSE than any other reference
points. The only exceptions were (1) Unit 5 and (2) the
average phase slightly outperformed ours for Unit 3. We also
compared the spatial RMSE distributions between our refer-
ence and the manual selected point. For the manual point, the
spatial distribution of RMSE of Units 1, 2, 6 (combined), and
3 clearly showed the advantage of using the algorithmically
selected reference point compared to the manually selected
point with lower RMSE values (Fig. 6). We used the Wilcoxon
rank-sum statistical test to evaluate the difference among
RMSE distributions resulting from the two methods and found
that they were significantly different (Fig. 6, p-value < 0.05).
We displayed the spatial distribution of temporal coherence
and water depths change velocity in Figs. S4 and S5 and
explained the reason of some high RMSE pixels in Unit 3
in Fig. S6. Overall, the automatic approach outperformed
the manual selection for five out of six units, and only
Unit 5 showed a higher RMSE.

V. DISCUSSION AND CONCLUSION

Our study developed a method for automatically selecting
optimal reference points for multitemporal InSAR SBASs
analysis. We showed the effectiveness of the method by
estimating long-term water depth variations in small, hydro-
logically distinct managed wetlands in the Sacramento Refuge,
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TABLE II
SUMMARY OF INSAR PERFORMANCE IN WETLAND UNITS

California. The method evaluates coherence behavior and con-
nectivity between a reference candidate to the AOI (wetland
unit in this case). We tested the method on six wetland units,
a highly segmented landscape challenging for InSAR. The
method successfully found optimal reference points for each
unit, which were used to generate accurate estimates of water
depth changes.

When compared to the other references, the automatic
unit-based references achieved better results in most of the
cases with a few exceptions in Units 3 and 5. Our method
outperforms the average phase method for five of the six
units except Unit 3 with slightly lower accuracy (Fig. 5).
Errors for Unit 5 are mostly contributed by unwrapping
errors due to large water depth variations instead of reference
points (Fig. S2 for details). The selected reference can correct
errors due to incoherent barriers between reference point and
AOI but not the errors due to large spatial phase gradients.
The automatic method does not necessarily result in better
accuracy, but it achieves comparable accuracy to a manually
or algorithmically selected point. We summarized the InSAR
performance over six units in Table II.

One advantage of our method is to consider the coherent
path between the reference point to the AOI. For example,
our method outperformed the manually selected point for
Unit 3 because there is no coherent path between the point and
the unit [Fig. 3(e)], which introduced unwrapping errors that
resulted in lower accuracy for the predicted water depths. Note
that the manually selected point showed high connectivity
to the AOI unit [Fig. 3(c)] using the connected component
generated by SNAPHU. We found that SNAPHU often showed
that connected components included pixels with relatively
low coherence values, which is partly due to the limit of
the number of components. We successfully used a mask
derived from the mean coherence to generate a new connected
component that filters the reference candidates with coherent
paths to the AOI to achieve better accuracy.

For future applications, users should adjust the parameters
in Table I based on InSAR stack parameters and knowledge
of local wetland environments. For example, perc_thd and
conn_perc_thd should change with the number of connected
neighbors. For computational performance, Step 3 is the most
time-consuming part. However, this can be easily reduced in
practice via (1) parallel processing and (2) sampling a subset
of the pixels within the searching square.

This new InSAR-based reference selection method not
only has great potential for understanding regional wetland
hydrology for other managed wetlands located in California
but also scientific value for other types of InSAR applications
for the upcoming NASA-ISRO SAR (NISAR).
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CODE AVAILABILITY
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