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A Two-Step Semiglobal Filtering Approach to
Extract DTM From Middle Resolution DSM

Yanfeng Zhang, Yongjun Zhang, Zhang Yunjun, and Zongze Zhao

Abstract— Many filtering algorithms have been developed to
extract the digital terrain model (DTM) from dense urban light
detection and ranging data or the high-resolution digital surface
model (DSM), assuming a smooth variation of topographic relief.
However, this assumption breaks for a middle-resolution DSM
because of the diminished distinction between steep terrains and
nonground points. This letter introduces a two-step semiglobal
filtering (TSGF) workflow to separate those two components.
The first SGF step uses the digital elevation model of the Shuttle
Radar Topography Mission to obtain a flat-terrain mask for the
input DSM; then, a segmentation-constrained SGF is used to
remove the nonground points within the flat-terrain mask while
maintaining the shape of the terrain. Experiments are conducted
using DSMs generated from Chinese ZY3 satellite imageries,
verified the effectiveness of the proposed method. Compared
with the conventional progressive morphological filter method,
the usage of flat-terrain mask reduced the average root-mean-
square error of DTM from 9.76 to 4.03 m, which is further
reduced to 2.42 m by the proposed TSGF method.

Index Terms— Digital surface model (DSM), digital terrain
model (DTM), middle resolution, semi-global filtering (SGF),
Shuttle Radar Topography Mission (SRTM).

I. INTRODUCTION

A. Background

D IGITAL terrain models (DTMs) provide an important
source of data that can be used in many applications,

such as terrain analysis [1]–[3] and the generation of digital
ortho maps. Light detection and ranging (LiDAR) and digital
surface models (DSMs) are two fundamental data sources
for DTM extraction. DTMs represent terrain surfaces, while
LiDAR or DSMs consist of both terrain and objects on
the terrain surface, which correspond to ground points and
nonground points, respectively. In order to obtain a DTM,
the nonground points need to be identified and removed from
LiDAR or DSM, which is called the filtering process [4].

Many filtering algorithms have been proposed for
DTM extraction, such as mathematical morphological
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methods [5], [6] (a typical mathematical morphological algo-
rithm will be used for comparative experiments in this letter),
triangulated irregular network-based methods [7], [8], slope-
based methods [9], [10], and scanline-based methods [11].
These filtering algorithms usually assume that the elevation
variation of topographic relief is smooth, while the vari-
ation of nonground points is abrupt. The above assump-
tion is usually true for LiDAR since its measurement den-
sity is high enough to have at least one point per square
meter (measurement density is substantially equal to res-
olution, and its effect on DTM extraction will be further
introduced in the following paragraph), and it is likely to
be limited to a subset of geographical areas, such as urban
areas which have few steep terrains. As a result, most of
the state-of-the-art algorithms can effectively extract a DTM
from LiDAR data, and similar in the case of high spatial
resolution DSM.

However, the above filtering methods are not suitable for
filtering middle-resolution DSMs, which are still widely used,
with a lot of middle-resolution stereo satellite imagery (such
as ZY-3, TH-1, Cartosat-1, and SPOT 5/6). These DSMs
usually have: 1) a resolution lower than 3 m and 2) a large-
scale cover of over 2000 km2. Both of the two charac-
teristics make it difficult to remove the nonground points
while keeping the shape of steep terrains. First regarding the
resolution, elevation variations caused by nonground points are
smoother in lower-resolution DSM, which makes the elevation
variations caused by nonground points in middle-resolution
DSM indistinguishable from the variations caused by abrupt
topographic relief. The significant effect of reduced resolution
on DTM extraction has been recognized years ago but scarcely
studied [4], [12]. Second, such a large-scale DSM tends to
contain steep mountainous terrain, which also hampers the
assumption that the elevation variation of topographic relief
is smooth while the variation in nonground points is abrupt.
In summary, the basic assumption for LiDAR filtering methods
is not suitable any more for middle-resolution DSM; thus, it
is prone to damage steep terrains when filtering algorithms
remove nonground points in flat-terrain areas. Chen et al. [13]
presented a method to handle with steep mountainous areas,
but it was designed for high-resolution DTM generation from
highly dense point clouds (6 points/m2). Another method [12]
was aimed at solving this problem by improving the resolution
of DSM in order to hold the assumption. However, multi-
source DSMs were needed, which led to the limitation of the
practicability.

B. Proposed Approach

For a middle-resolution DSM, it is mainly the flat-terrain
areas, more specifically the built-up areas, that need to be
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Fig. 1. Flowchart of the proposed TSGF method.

processed. It is also important to take some strategies to
keep the mountainous terrains from being damaged. Therefore,
we think the DTM extraction process can be divided into
two steps: 1) detect the flat-terrain mask of the DSM and 2)
remove the nonground points in the flat-terrain areas. The two-
step method separates the flat terrains from steep mountainous
terrains, thus making nonground points in the flat-terrain areas
distinguishable from terrains.

Based on the above analysis, we propose the two-step
semiglobal filtering (TSGF) method, which is presented in
the following sections. Section II describes the methodology
of the two-step workflow. Section III shows the experimental
results. A brief discussion is illuminated in Section IV with
our conclusion in Section V.

C. Related Work

The SGF algorithm is first proposed to extract the DTM
from a LiDAR data set [14]. The energy function employed
a locally calculated balance coefficient which was designed
for highly dense point clouds, but not suitable for the low-
resolution DSM filtering. This letter is based on our previous
work [15], in which the flat-terrain mask was detected with
the input DSM; however, it tended to fail in areas with
high building density. To solve this problem, in this work,
the input DSM is replaced with Shuttle Radar Topography
Mission (SRTM) [16] data to detect the flat-terrain mask.
Moreover, the energy function for DSM filtering is improved
to achieve a superior DTM. In addition, more experiments
including quality evaluation and quantitative assessment are
conducted in order to verify the effectiveness of TSGF.

II. METHOD

As presented in Fig. 1, the proposed method consists of two
steps: 1) detecting flat-terrain areas and 2) filtering the flat ter-
rains. For the first step, a low-resolution DTM geographically
corresponding to the input DSM is extracted from the SRTM,
and then a slope map of the DTM is computed and processed
by SGF. After that, the filtered slope map is binarized to
achieve a flat-terrain mask, which is mapped back on the input
DSM and segmented. For the second step, SGF is employed
to process the DSM with the constraint of segmentation and
obtain a classification surface, which is then used to remove
the nonground points from the input DSM. The final DTM is
generated by the interpolation of the ground points.

A. Semiglobal Filtering of Slope Map

Slope is one of the most important DSM characteris-
tics, which can be used to distinguish steep terrains from

flat terrains. However, terrain type cannot directly be deter-
mined by slope because a pixel at flat terrain does not always
have a lower slope than a pixel at mountainous terrain.

Nevertheless, most of pixels at flat terrain have a lower
slope than those at mountainous terrain. A nonlocal filter keeps
the slope changing smoothly on the whole DSM, and thus
would enhance the slope difference between flat terrain and
mountainous terrain by suppressing high slope at flat-terrain
area while promoting low slope at mountainous-terrain area.

The nonlocal filtering of a slope map assigns new slope
values to each pixel. The new slope should be as close as
possible to the original slope with the constraint that changes
in the neighbor slopes must be as small as possible. Since the
slopes used in the nonlocal filtering are discrete values while
the initial slope map is continuous, it should be discretized
before filtering. In this letter, the slope is discretized by one
degree; therefore, the discretized slope map has 90 levels.
Filtering of the slope map can be modeled as a labeling
problem with the following energy function which depends
on slope map S:

E(S) =
∑

p

⎛

⎝C(p, Sp) +
∑

q∈Np

P1T [|Sp − Sq | = 1]

+
∑

q∈Np

P2T [|Sp − Sq | > 1]

⎞

⎠

T [x] =
{

1, x = true
0, x = false

C(p, Sp) = |Sp − S
′
p|/90 (1)

where Sp represents the possible slope level of p, S
′
p rep-

resents the original slope level of p, and P1 and P2 are
constants, which are the penalties for slope level changes.
q is the neighbor pixel of p.

The optimization of (1) is the minimization of whole energy,
which is achieved by assigning proper slope to each point. The
energy function can be solved with semiglobal optimization,
which was originally used in stereo matching [17]. The algo-
rithm aggregates the cost for each point from eight directions
independently, and the optimal label of each point is obtained
by the “winner takes all” principle. The label in the original
algorithm was disparity, which is replaced in this letter with
a slope value.

B. Generation of Flat-Terrain Mask Based on SRTM

The method for the generation of flat-terrain mask is as
follows. First, a DTM is extracted from the SRTM corre-
sponding to the spatial coverage of input DSM, which is then
used to generate a slope map for producing an initial flat-
terrain mask by SGF (Section II-A) and binarization. Finally,
the initial flat-terrain mask is refined and mapped back on the
input DSM, thus achieving the final flat-terrain mask of the
input DSM. Modified from our previous work [15], we use
SRTM in this letter, which is basically a low-resolution DTM
without nonground points, rather than DSM itself to detect the
flat terrain. This gives a better estimation of nonground point
mask for a low-resolution DTM.
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Fig. 2. Segmentation-constrained SGF.

In detail, the binarization threshold used in this letter
is 4°. Besides, a region growing-based segmentation method
is used and the patches below 100 pixels are removed since
binarization may generate small patches in the mask. The
two thresholds are both empirically adopted, and they are
suggested for processing DSMs with a resolution of 5–10 m.

C. Segmentation-Constrained Semiglobal Filtering of DSM

Within a flat-terrain mask, it becomes possible to distinguish
ground points from nonground points because the topographic
relief is smooth while the elevation variation caused by non-
ground points is abrupt. In particular, the flat-terrain mask is
first divided into segments, and SGF is implemented within
each segment independently. Fig. 2 shows the segmentation-
constrained SGF of a DSM. The segmentation algorithm used
is the simple linear iterative clustering algorithm [18], and the
super-pixel step size for segmentation is 100 in this letter.

The filtering of a DSM can also be modeled as a labeling
problem, in which the label corresponds to the height level.
The energy function for SGF of a DSM is as follows:

E(H ) =
∑

p

⎛

⎜⎜⎜⎜⎜⎜⎝

γpC(p, Hp)

+(1 − γp)

(
∑

q∈Np

P3T [|Hp − Hq| = 1]

+ ∑
q∈Np

P4T [|Hp − Hq |>1]
)

⎞

⎟⎟⎟⎟⎟⎟⎠

(2)
γp∈S(i)

= β exp

(
−

H
′
p − Hmin(i)

Hmax(i) − Hmin(i)

)
(3)

C(p, Hp)

=
{

1 − exp(−α(Hp − H
′
min(p))), if Hp ≤ H

′
p

∞, if Hp > H
′
p

(4)

where γp is the balance coefficient, which is calculated with an
original height level H

′
p. Hp is the possible height level. S(i) is

the i th segment. Hmax(i) and Hmin(i) are the maximum and
minimum height values within the segment S(i). H

′
min (p) is

the minimum height level within the local window of point p.
The window size is 3 × 3 in this letter. α and β are preset
constants. P3 and P4 are constants, which are the penalties
for height level changes.

It can be seen that the data term C(p, Hp) is truncated at the
original height level because the classification surface cannot
be higher than the input DSM. The balance coefficient γp is
used to attract lower height and reject higher height because
the nonground points tend to be higher than the surrounding

Fig. 3. Overview of experimental data. (a) “Beijing” DSM with a resolution
of 10 m, which was located in Beijing. (b) “Huanggang” DSM with a
resolution of 5 m, which was located in Huanggang. Four typical subsets
are presented in red color and also shown in Fig. 4.

ground points. The balance coefficient is calculated within the
segment and thus cannot be affected by the size of the whole
mask.

The energy function can also be solved by semiglobal
optimization as described in Section II-A; thus, a classification
surface is achieved.

D. Classification and DTM Generation

The classification method calculates the elevation change of
each point between the classification surface and the original
DSM, and if the change is larger than the height-level spacing,
the point is classified as a nonground point and removed from
the original DSM. Finally, the DTM is generated from the
ground points with the inverse distance-weighted interpolation
algorithm [19].

III. EXPERIMENT

A. Data

DSMs generated with Chinese ZY-3 imageries were used
as the experimental data in this letter. The experimental areas
were located at the Beijing and Huanggang of China, which
contain mountainous terrains with both abrupt and smooth
topographic relief and flat terrains with a large number of
urban buildings (Fig. 3). The results of four typical sub-
sets (Fig. 4) are presented in order to obtain more details
about DSMs and DTMs. Because ground truth (GT) data were
unavailable, manually edited DTMs were used as the GT in
order to conduct the quantitative assessment. The manually
edited DTMs were carefully acquired by an experienced
operator with the guidance of the original stereo imageries.

B. Method

Progressive morphological filtering (PMF) [5] is a typical
and frequently used method for automatic extraction of DTMs
from LiDAR data sets, which was used in this letter for
comparison with the proposed method. To demonstrate the
significant influence of flat-terrain mask on the final DTM,
we implemented a modified version of PMF method, which
performed PMF within the flat-terrain mask to extract a DTM,
indicated as PMF + Mask in the following context. The flat-
terrain mask used in PMF+Mask is the same as the one used
in TSGF.
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Fig. 4. Overview of four typical subsets picked from the input DSMs.
(a)–(c) Subsets picked from the “Beijing” DSM. (d) Subset picked from the
“Huanggang” DSM. In particular, (a) and (b) represent the flat-terrain areas
whereas (c) and (d) represent the complicated terrain areas which contained
both steep mountainous terrains and flat terrains with buildings.

We first conducted visual comparison of the results of
the four typical subsets (Section III-C). Then we conducted
quantitative assessment (Section III-D), which consists of two
parts. For the first part, we evaluated the accuracy of iden-
tifying nonground points of the three comparative methods.
We obtained the GT of nonground points by comparing the
GT with DSMs. Then, three kinds of errors [4], namely,
Type I errors (omission errors), Type II errors (commission
errors), and total errors were evaluated. For the second part,
the residual errors between GT and DTMs processed with
PMF, PMF + Mask, and TSGF were collected. Based on
the residual errors, the following two indicators were used
to evaluate the accuracy: 1) root-mean-square error (RMSE)
and 2) mean error (ME).

The TSGF algorithm with C++ language was applied.1

All the experiments were conducted on a single i7 CPU core.
The parameters recommended for TSGF in practice were as
follows: P1 = 0.1, P2 = 0.3, P3 = 0.3, P4 = 6, α = 0.1, and
β = 0.5. The parameters used for PMF are as follows [5]:
k = 10, s = 0.1, dh0 = 2.0, and dhmax = 3.0. Using
above parameters, both algorithms achieved their best overall
performance for the testing sites in this letter.

C. Visual Comparison of DTM

In Fig. 5, the first and second rows show that all of the
three methods removed most of the nonground points in
flat-terrain areas. However, the third and fourth rows show
that PMF heavily damaged the mountainous terrains while
PMF + Mask performed much better than PMF since the
mountainous terrains were majorly kept. It can also be seen
from the third row that PMF + Mask damaged some gentle
mountainous terrains, which were robustly kept by TSGF.

1The main code of TSGF along with testing data can be found on GitHub:
https://github.com/zenmemeinuanqi/Two-step-Semi-Global-Filtering.

Fig. 5. Visual comparison of the DTMs at different terrains. The columns
from left to right display the DTMs processed with (a), (e), (i), and (m) PMF,
(b), (f), (j), and (n) PMF + Mask, (c), (g), (k), and (o) proposed TSGF,
and (d), (h), (l), and (p) GT, respectively.

TABLE I

THREE TYPES OF ERRORS OF PMF, PMF + Mask, AND TSGF
FOR THE FOUR TESTING SUBSETS (%)

D. Quantitative Assessment of DTM

As shown in Table I, the results of PMF and PMF +
Mask for Subset1 and Subset2 were the same. Regarding
Subset3 and Subset4, all the three types of errors of PMF +
Mask were less than PMF. And TSGF achieved the best
performance among the three comparative methods for all
the four testing subsets in terms of Type II errors and total
errors. The average total errors of testing subsets for PMF,
PMF + Mask, and TSGF were 22.67%, 21.46%, and 9.67%,
respectively. Fig. 6 shows the accuracy of DTMs generated
by PMF, PMF + Mask, and TSGF. The results of PMF and
PMF + Mask for Subset1 and Subset2 were the same. The
usage of a flat-terrain mask reduced the average RMSE of
PMF from 9.76 to 4.03 m, which is further reduced to 2.42 m
by the proposed TSGF method.

IV. DISCUSSION

The results shown in Fig. 5 clearly demonstrate that the
extracted DTMs benefited from the usage of flat-terrain
mask and the proposed TSGF performed better than PMF.
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Fig. 6. (a) RMSEs and (b) MEs of DTMs generated by PMF, PMF + Mask,
and the proposed TSGF for the four testing subsets.

In Table I and Fig. 6, the results of PMF and PMF+Mask for
Subset1 and Subset2 were the same because the whole subsets
were detected as flat terrains. It is noteworthy that the capa-
bility of keeping terrains enables TSGF reduces Type II errors
significantly at the cost of having a larger Type I errors because
some nonground points at steep terrains might be identified as
a ground point mistakenly. Nevertheless, according to results
in Sections III-C and III-D, the usage of flat-terrain mask was
effective to extract a superior DTM. Moreover, TSGF achieved
the best accuracy among the three comparative methods for
all the testing subsets. It suggests that the proposed energy
function for the segmentation-constrained SGF is effective and
practical to extract DTM from a middle-resolution DSM.

TSGF has limitations. It removes the nonground points in
the flat-terrain areas while keeping steep terrains unchanged.
However, there might be large forests in the steep mountainous
areas. In that scenario, TSGF will not be able to detect and
remove them. This has been an unsolved problem for lots of
state-of-the-art methods to extract a DTM from DSM produced
by imageries because the forest areas of such a DSM usually
have no visible ground points [13], [20].

V. CONCLUSION

Most of existing filtering methods are designed for dense
point cloud and cannot extract DTM from a middle-
resolution DSM. To address this issue, we proposed a TSGF
method. Experiments carried out on the DSMs produced with
ZY-3 satellite images demonstrated the effectiveness of the
proposed method. It has three contributions. First, the proposed
method includes a practical “two-step” workflow for extracting
DTM from a middle-resolution DSM. Second, the proposed
method employs SRTM to detect a flat-terrain mask, which can
robustly distinguish between steep terrains and flat terrains.
Third, the proposed approach includes a new segmentation-
constrained SGF method to remove nonground points while
maintaining the shape of the terrains. The proposed method
would be a helpful tool and has the potential to replace manual
editing in DTM production from the middle-resolution DSM.
The flat-terrain mask was shown to be very important for the
proposed method because DSM filtering could be implemented
only within the mask. However, this strong constraint for
DSM filtering that may not be robust enough, which is an
important facet of the proposed method. Therefore, how to
use the mask in a more robust way is worthy of further study.
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