
ABSTRACT	
  
	
  

Ryukyu	
   volcanic	
   arc	
   is	
   Japan’s	
   triple	
   junc:on	
   formed	
   by	
   the	
  
subduc:on	
  of	
  the	
  Philippine	
  Sea	
  Plate	
  beneath	
  the	
  Eurasian	
  Plate.	
  
Lying	
   on	
   the	
   north	
   of	
   this	
   arc,	
   Kyushu	
   Island	
   volcanoes	
   could	
  
severely	
  disrupt	
  over	
  110	
  million	
  people’s	
  everyday	
  life	
  (Tatsumi	
  
and	
   Suzuki,	
   2014,	
   PJA	
   Ser.B)	
   due	
   to	
   poten:al	
   catastrophic	
  
caldera-­‐forming	
   erup:on.	
   2011	
   Shinmoe-­‐dake	
   erup:on	
   is	
   the	
  
latest	
  magma:c	
  erup:on	
  on	
  Kyushu	
   Island.	
  GPS	
  based	
  modeling	
  
has	
  been	
  conducted,	
  but	
  no	
  InSAR	
  yet.	
  	
  

We	
  processed	
  three	
  tracks	
  of	
  ALOS	
  L-­‐band	
  SAR	
  data	
  covering	
  
Shinmoe-­‐dake	
  crater	
  using	
  :me	
  series	
  InSAR	
  technique.	
  All	
  show	
  
defla:on	
  on	
  and	
  around	
  the	
  crater.	
  A	
  shallow	
  magma	
  chamber	
  of	
  
about	
   2.7	
   km	
   under	
   the	
   summit	
   is	
   es:mated	
   using	
   half-­‐space	
  
Mogi	
   model.	
   This	
   confirms	
   that	
   shallow	
   magma	
   source	
   is	
  
preferen:al	
   on	
   strike-­‐slip	
   tectonic	
   seXngs	
   (Chaussard	
   and	
  
Amelung,	
   2014,	
   G3).	
   Defla:on	
   and	
   infla:on	
   ac:vi:es	
   are	
   also	
  
detected	
  on	
  Kuju	
  volcano	
  and	
  Sakurajima	
  caldera.	
  

Pre-­‐erup've	
  deforma'on	
  of	
  Kyushu	
  Island	
  volcanoes	
  and	
  magma	
  source	
  
depth	
  of	
  Shinmoe-­‐dake,	
  Kirishima	
  with	
  L-­‐band	
  'me	
  series	
  InSAR	
  

Fringe	
  2015,	
  P2-­‐188	
  

METHODOLOGY	
  
•  Data:	
   4	
   tracks	
   (2	
   Asc,	
   2	
   Desc)	
   276	
   ALOS	
   images	
   (2006-­‐2011)	
   from	
   JAXA,	
   and	
   0.4	
   arc-­‐

second	
  (~10	
  m)	
  Digital	
  Ellipsoidal	
  Height	
  Model	
  from	
  GSI,	
  Japan	
  [Tobita	
  et	
  al.,	
  2002]	
  
•  InSAR	
  processing:	
  331	
  interferograms	
  (Ifgs)	
  produced	
  acer	
  genera:ng	
  SLCs	
  with	
  Gamma.	
  
•  Time	
   series	
   InSAR:	
   Small	
   Baseline	
   Subset	
   (SBAS)	
   [Berardino	
   et	
   al.,	
   2002,	
   TGRS]	
   using	
  

PySAR	
  developed	
  at	
  Univ	
  of	
  Miami.	
  

SAR	
  Focusing	
  (GAMMA)	
  

InSAR	
  Processing	
  (ROI_PAC)	
  

Time	
  Series	
  processing	
  (PySAR)	
  

Magma	
  source	
  modeling	
  (GeodMod)	
  

SBAS	
  Network	
  selec:on	
  

Remove	
  Tropospheric	
  effect	
  
(PyAPS),	
  DEM	
  error	
  &	
  phase	
  ramp	
  

Inversion	
  of	
  velocity	
  and	
  :me	
  
series	
  

AlosD Data

AlosD Model

AlosD Residual
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IFGRAM	
  
20060924	
  
20100217	
  

Raw	
   +	
  Tropo_Cor	
   +	
  DEM_Cor	
   +	
  quadra:c	
  deramp	
  
o  Pairs	
  selec:on:	
  threshold	
  (1000	
  days	
  and	
  1	
  km),	
  drop	
  low	
  coherent	
  Ifgs	
  manually.	
  
o  Phase	
   correc:on:	
   tropospheric	
   phase	
   es:ma:on	
   using	
   ECMWF	
  weather	
   re-­‐analysis	
  

data	
   with	
   PyAPS	
   [Jolivet	
   et	
   al.,	
   2011,	
   GRL],	
   DEM	
   error	
   correc:on	
   [Fa<ahi	
   and	
  
Amelung,	
  2013,	
  TGRS]	
  and	
  quadra:c	
  ramp	
  removal.	
  

•  Magma	
  source	
  modeling:	
  half-­‐space	
  Mogi	
  model	
  with	
  GeodMod.	
  

1	
  PRE-­‐ERUPTIVE	
  DEFORMATION	
  OF	
  VOLCANOES	
  ON	
  KYUSHU	
  ISLAND	
  

	
  	
  	
  	
  b)	
  Magma	
  Storage	
  
Elas:c	
  homogeneous,	
  isotropic	
  half-­‐space	
  Mogi	
  model.	
  Posi'ons	
  of	
  best	
  fiXng	
  sources	
  are	
  calculated	
  using	
  Annealing	
  inversion	
  with	
  

GeodMod	
  socware	
  ().	
  Depths	
  are	
  shown	
  rela've	
  to	
  the	
  half	
  space	
  (black)	
  and	
  to	
  the	
  summit	
  (gray).	
  

2	
  SHINMOE-­‐DAKE	
  
	
  	
  	
  	
  a)	
  Time	
  series	
  	
  -­‐	
  InSAR	
  vs.	
  GPS	
  

•  Defla:on	
  trend	
  before	
  2010	
  due	
  to	
  depressurized	
  magma	
  chamber	
  
•  Sudden	
  defla:on	
  acer	
  2011	
  magma:c	
  erup:on	
  
•  Rapid	
  accumula:on	
  on	
  deep	
  magma	
  reservoir	
  (	
  9	
  km	
  from	
  GPS)	
  and	
  

unobvious	
  accumula:on	
  on	
  shallow	
  magma	
  chamber	
  (0.5	
  km	
  from	
  
InSAR)	
  before	
  erup:on	
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Fig. 2. An example of baseline changes of GEONET station pairs around
the Kirishima volcano group. (a) Plots using raw data. (b) Plots using
corrected data. Triangles in (b) indicate the time when phreatic erup-
tions occurred. See Section 3 for details.

3. Removing the Effects of Tectonic Ground De-
formation and the Influence of Sakurajima Vol-
cano around Shinmoe-dake Volcano from GPS
Measurements

Before we analyze the ground deformation caused by
the volcanic activity at Shinmoe-dake volcano, we need
to pay attention to the regional deformation in southern
Kyushu, because many previous studies have suggested a
complicated ground-deformation field near Shinmoe-dake
volcano. Figure 2(a) shows an example of the temporal
variation of the baseline lengths of three pairs of studies
around Shinmoe-dake volcano (Fig. 1). All three base-
line lengths began to increase simultaneously at the end of
December 2009, decrease suddenly in January 2011, and
then increase again until November 2011. We can confi-
dently conclude from the spatial pattern of displacement
vectors that these are caused by ground inflation and de-
flation beneath Shinmoe-dake volcano. In addition, linear
trends in the baseline lengths are found between 2003 and
2009 (Fig. 2(a)), and such trends are larger than the inflation
observed between December 2009 and January 2011. The
polarity of the trends (compression or extension) is not con-
sistent among the traces. Hence, these changes originated
from the regional tectonic motions and should be eliminated
before starting volcanological analysis.

Fig. 3. The velocity field in southern Kyushu measured by GEONET
with respect to a site shown as a solid circle (31.416N, 130.136E). The
open triangle indicates the location of Shinmoe-dake volcano. It is clear
that ground deformation around the volcano is affected by the regional
tectonic deformation and dilatation due to Sakurajima volcano (small
solid triangle). To estimate the ground deformation originated from
Shinmoe-dake volcano, it is important to remove these deformations.

The mechanisms of the regional crustal deformation in
southern Kyushu are controversial. Nishimura et al. (2004)
proposed that block rotation of the Ryukyu arc is the main
factor. Takayama and Yoshida (2007) suggested that tem-
poral variations in the inter-plate coupling affect the defor-
mation rate. Wallace et al. (2009) tried to explain the defor-
mation field assuming an east-west striking shear zone in
southern Kyushu. All of these studies mentioned two com-
mon features: (1) Ground deformation in southern Kyushu
is strongly affected by the subduction of the Philippine Sea
Plate. However, the deformation rate is almost uniform in
the southernmost Kyushu regions, but is non-uniform to the
north of 32.0N, possibly reflecting the non-uniform inter-
plate coupling. (2) Dilatational deformation is dominant
around Sakurajima volcano, a very active volcano. Because
the scope of this paper is to estimate ground inflation and
deflation caused by magma emplacement associated with
the 2011 Shinmoe-dake eruption, we simply remove these
components and do not discuss deformation of a tectonic
origin.

Figure 3 shows the velocity field measured by continu-
ous GPS observations with respect to Station 960777 (solid
circle in Fig. 3) over the period from November 2004 to
November 2009. No significant deformation of volcanic
origin occurred around Shinmoe-dake (open triangle in
Fig. 3) during this period. The northwestward motion is
dominant to the north of Shinmoe-dake. On the other hand,
outward motions are dominant around Kagoshima Bay (that
is Aira Caldera, shown as “KB” in the figure), located to the
north of Sakurajima volcano (indicated by a small solid tri-
angle). To extract the ground deformation associated with
the 2011 eruption of Shinmoe-dake volcano, it is crucial to
isolate that component from the overall deformation data.
Here, we suppose that the observed ground displacement
at the i-th station, Ui , is composed of four components as
follows:

Ui = Ui
Shinmoe + Ui

tectonic + Ui
Sakurajima + ei , (1)
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Time of phreatic eruptions 
Time of magmatic eruptions 

•  Source	
  depth:	
  0.5	
  km	
  (2.7	
  km)	
  
•  Source	
  center:	
  N	
  31.9134°,	
  E130.8863°	
  (NE	
  crater)	
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CONCLUSIONS	
  
•  Ac:ve	
  volcanic	
  systems	
  on	
  Kyushu	
  Island	
  detected	
  by	
  InSAR:	
  
	
  	
  	
  	
  	
  à	
  Fast	
  defla:on	
  on	
  Kuju	
  volcano	
  
	
  	
  	
  	
  	
  à	
  Constant	
  infla:on	
  on	
  Sakurajima	
  caldera	
  
	
  	
  	
  	
  	
  à	
  Complex	
  ac:vi:es	
  on	
  Shinmoe-­‐dake,	
  Kirishima.	
  Years	
  before	
  
erup:on:	
  crater	
  subsiding,	
  reservoir	
  no	
  deforma:on;	
  one	
  year	
  before	
  
erup:on:	
  complex	
  deforma:on	
  parern	
  on	
  the	
  crater,	
  compared	
  with	
  
rapid	
  magma	
  accumula:on	
  in	
  the	
  deep	
  magma	
  reservoir.	
  
	
  
•  Result	
  shows	
  Shinmoe-­‐dake	
  has	
  a	
  magma	
  chamber	
  of	
  2.7	
  km	
  deep	
  

rela:ve	
  to	
  its	
  summit,	
  located	
  at	
  the	
  northeast	
  part	
  of	
  its	
  crater.	
  This	
  
confirms	
  shallow	
  volcanic	
  magma	
  source’s	
  preference	
  on	
  strike-­‐slip	
  
seXng.	
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distance[km]TOTAL RMS:  2.57 mm  (AlosD 99.74mm, )                                 
NUMBER OF DATA POINTS AlosD 1503      ,                                
RMS FOR UNIT SIGMAS   AlosD  2.57mm,                                   
WEIGHTS:              AlosD 100.00%    ,                               
GenericObjectiveFunction, mogi: 1, algorithm: Anneal, FollowGradient: 1
   xE    xN   Dep Stren                                                
 2.00  2.00  0.00 −100.00                                              
 5.00  5.00  5.00  0.00                                                
 3.04  3.86  0.53 −0.02                                                
Number of model parameters: 0 linear, 0 fixed, 4 free, 0 phaseramp
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distance[km]TOTAL RMS:  3.02 mm  (AlosD 103.91mm, )                                
NUMBER OF DATA POINTS AlosD 1185      ,                                
RMS FOR UNIT SIGMAS   AlosD  3.02mm,                                   
WEIGHTS:              AlosD 100.00%    ,                               
GenericObjectiveFunction, mogi: 1, algorithm: Anneal, FollowGradient: 1
   xE    xN   Dep Stren                                                
 2.00  2.00  0.00 −100.00                                              
 5.00  5.00  5.00  0.00                                                
 3.17  3.71  0.48 −0.02                                                
Number of model parameters: 0 linear, 0 fixed, 4 free, 0 phaseramp
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distance[km]TOTAL RMS:  3.62 mm  (AlosA 213.78mm, )                                
NUMBER OF DATA POINTS AlosA 3489      ,                                
RMS FOR UNIT SIGMAS   AlosA  3.62mm,                                   
WEIGHTS:              AlosA 100.00%    ,                               
GenericObjectiveFunction, mogi: 1, algorithm: Anneal, FollowGradient: 1
   xE    xN   Dep Stren                                                
 2.00  2.00  0.00 −100.00                                              
 5.00  5.00  5.00  0.00                                                
 2.81  3.65  0.50 −0.03                                                
Number of model parameters: 0 linear, 0 fixed, 4 free, 0 phaseramp
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