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ABSTRACT

Synthetic aperture radar Interferometry (InSAR) has proven
to be an effective landslide monitoring technique, especially
for very slow landslides without observable morphological
features. Integration of multi-source InSAR observations
from different satellites/tracks could help reduce omissions
and misjudgements of potential landslides, showing a promis-
ing trend toward automatic landslide detection and monitor-
ing at regional or national scale. However, existing methods
present poor error suppression performance, and are not capa-
ble of describing and solving potential information conflicts,
due to the neglect of observation uncertainties during the in-
tegration. Here we propose a new integrated method based on
Dempster-Shafer evidence theory to address these deficien-
cies. The two key steps are multi-source InSAR integration
based on DST and a two-step decision rule. We apply the
proposed method to the entire Jinsha River Basin using both
ascending and descending Sentinel-1 SAR data from 2014 to
2023. The preliminary result on the Luoshui-Baini section
based on two sources (ascending and descending orbits) iden-
tified 68 landslides, which is nearly the same between our
method and the existing mosaic method.

Index Terms— Landslide, early detection, multi-source
InSAR integrated decision, Dempster-Shafer evidence theory
(DST)

1. INTRODUCTION

For regional landslide early detection, InSAR presents unique
advantages due to large coverage, dense measurements, and
relatively high sensitivity. However, single-track InSAR
measurements have considerable uncertainties [1], which are
mainly derived from various non-random noises (such as
decorrelation noise from vegetation) and differences in mea-
surement sensitivity and observability (shadow and layover)
caused by systematic factors and terrain. Such uncertain-
ties can subsequently lead to omissions or misjudgments of
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landslides. Integrated usage of multi-source observations
from different satellites/tracks is expected to reduce possible
omissions or misjudgments.

Integrated approach using multi-source InSAR at regional
scale with automatic decision-making is desired to reduce la-
bor costs. Existing methods are mainly belong to the mo-
saic method [2, 3, 4], which sets multiple thresholds (defor-
mation, slope, aspect, and so on) to detect landslide candi-
dates in each InSAR result and then directly mosaics all can-
didates. One major issue is that their successful applications
highly depend on reliable thresholds, most of which are non-
adaptive and based on prior knowledge or subjective experi-
ences of experts. The implied assumption within these meth-
ods is that INSAR measurements are approximately accurate
with only slight random errors. However, single-track InNSAR
measurements have considerable uncertainties. Some highly
error-causing factors are prone to result in information con-
flicts among InSAR results, especially for big-data analysis
at regional scale. In summary, since the potential uncertain-
ties are neglected, the multi-source InSAR integrated decision
based on existing methods present two deficiencies: a) poor
error suppression performances, and more importantly, b) in-
ability to describe and solve potential information conflicts.

In this paper, we propose a new method for multi-source
InSAR integrated decision based on Dempster-Shafer evi-
dence theory [5, 6], named MIID-DST, which is aimed to
solve the deficiencies due to the ignorance of uncertainties
more properly. First, MIID-DST takes full advantage of evi-
dence (following the terminology used in DST, information is
hereafter referred to as evidence) relevance and, to a certain
extent, weakens the influence of bad evidence through rea-
soning and crosschecking, thereby forming enhanced error
suppression in integration. Second, MIID-DST is capable of
quantitatively describing evidence conflicts, providing inte-
grated results with richer information, including pessimistic
and optimistic estimations of deformation and an uncertain
degree of estimation. In addition, the two states of weak de-
formation and artifacts, which are usually confused in exist-
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ing methods, could be automatically distinguished, reducing
the possibility of misjudgements.

2. METHODOLOGY

The workflow consists of three steps, as shown in Fig. 1.

Step 1: Single-track InSAR processing. Since the defor-
mation rate is the most direct indicator for active landslides,
single-track InSAR processing is required to convert the SAR
data stacks to deformation rate maps. The related processing
and details are described in Section 2.1.

Step 2: multi-source InSAR integration based on DST.
The core contents is described in Section 2.2, consisting of
a) the construction of the evidence reasoning model and b)
a combination rule for InNSAR observations. The integrated
result can provide richer information than the existing meth-
ods, including the pessimistic estimation Bel(Def.) and op-
timistic estimation PI(Def.) of deformation and the uncer-
tainty degree of estimation Und(Def.).

Step 3: Two-step decision rule. Based on the outputs of
step 2, a two-step decision rule is designed in Section 2.3 to
automatically detect suspected landslides in combination with
morphological correction.

Finally, for the automatically detected landslide candi-
dates, we manually eliminate potential misjudgements based
on geological, morphological features (e.g., scarps, sliding
masses, and bulging toes), and field investigations.

2.1. Single-track InSAR Processing

For each track of SAR images, we derive the surface displace-
ment history in the radar line-of-sight (LOS) direction using
InSAR time series analysis. More specificially, we use the
topsStack processor [7] within the ISCE-2 software [8] for
the interferogram stack processing and the MintPy software
[9] for the InSAR time series analysis using the small base-
line approach. Decorrelation noise is reduced using strate-
gies such as small baseline combination [10], phase filtering,
and multi-looking, tropospheric delays are corrected using
ERAS [11], and topographic residuals are corrected accord-
ing to their relation to the perpendicular baseline (combined
with deformation model) [12]. The remaining phase errors
are neglected due to precise orbit of the Sentinel-1 satellite
[13], short wavelength [14] and the long time coverage of the
data used.

2.2. multi-source InSAR Integration Based on DST
2.2.1. Evidence Reasoning Model

We first construct the evidence reasoning model using its two
most basic elements: the frame of discernment and mass func-
tion. In this study, the frame of discernment U is set as:

U = {Def., Sta.} €))
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Fig. 1. The whole workflow of the proposed MIID-DST
methodology.

where Def. is the abbreviation for deformation, Sta. is the
abbreviation for stabilization.

The mass function m(.) is defined as basic probability as-
signment function. In this study, the mass function, which
relates the single-track InSAR deformation rate, is designed
following the workflow illustrated in Fig. 1. First, a map-
ping function is constructed to transform the deformation rate
V; of the i*" single-track InSAR result into the deformation
probability P;, as:

[ |Vi|/thresV | |Vi| < thresV
Pi= { 1, |Vi| > thresV @
where |.| is used to calculate the absolute value, thresV is
an empirical threshold of deformation to characterize the de-
formation rate of a certain landslide, which is highly depen-
dent on the global accuracy o of InSAR measurements, for in-
stance, thresV = 50 in our case. Note that in order to avoid
unrealistic amplification of phase noise, we do not calculate
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and employ the 3D deformation rate to obtain the deforma-
tion probability. Next, the mass function m(.) is designed to
assign basic probabilities to all hypothesis in U, which can be
expressed as:

Suppose there are N pieces of evidence provided by In-
SAR results from N tracks, the evidence reasoning model can
be established based on the frame of discernment in (1) and
the mass function in (3).

2.2.2. Combination Rule

Following DST, the combination rule for InSAR observation
can be described as:
{m (A)=(1—-K)p(A) + Keq(A),A = Def.orSta.

m(U) = K (1—¢) )

where K indicates the degree of evidence conflict, p(A) de-
notes commonly shared belief among evidence, ¢ is the com-
pound confidence, ¢(A) is the average evidence support term
optimized for InSAR observation with weights taken as the
observation sensitivities. All of the above variables follow
Sun’s rule [6], except for the weighting of g(A).

Additional information can be derived from the inte-
grated results based on DST: a) the pessimistic estimation
Bel(Def.); b) the optimistic estimation PI(Def.); and c)
the uncertainty degree of estimation Und(Def.). The for-
mer two reflect the lower and upper limits of the integrated
deformation probability, respectively; while the latter is a
quantification of evidence uncertainty. They can be simpli-
fied as:

Bel (Def.) = ZAgDef_m(A) =m (Def.)
Pl(Def.) =3 anpeszs™(A) =m(Def.) +m(U) (5)
Und (Def.) = Pl(Def.) —m (Def.) =m (U)

2.3. Two-step Decision Rule

After the integration, a two-step decision rule (Fig. 1), con-
sisting of strong judgment followed by weak judgment, is ap-
plied. The strong judgment refers to the common method, i.e.,
sets a threshold thres (generally 1o) to the deformation rate
to identify the points in deformation and stabilization. Then,
for those unjudged points in confusing states, a weak judg-
ment is performed by comparison between Bel(Def.) and
Und(Def.). The weak judgment has the potential to distin-
guish between the two states: weak deformations, and arti-
facts caused by residual errors (identified as Sta.).

3. EXPERIMENTS

3.1. Study Area

The Jinsha River starts from the southeastern Tibet Plateau,
flows through the northwestern Yunnan-Guizhou Plateau,

Fig. 2. Study area and dataset coverage. (a) The coverage of
Ascending Sentinel-1 data in the study area. (b) The coverage
of descending Sentinel-1 data in the study area. The green box
show the areas demonstrated in Section 3.3.

and ends in the southwestern Sichuan Basin (orange line in
Fig. 2). The length of the mainstream is approximately 2316
km, covering an area of approximately 500,000 km?. Under
rapid tectonic uplift and river erosion, canyon-type landforms
with valley depths greater than 1000 m are highly developed,
which is prone to landslides [15]. Additionally, more than 20
giant cascade hydropower stations are built along the river.
Hydropower construction activities tend to accelerate the haz-
ard process and further increase the risk of landslides. In this
paper, we focus on the entire Jinsha River Basin, to detect
active landslides using satellite radar data.

3.2. Dataset

We use Sentinel-1 SAR data to derive a near-decadal surface
deformation history covering the Jinshan River Basin from
2014 to 2023. 11 tracks with more than 6000 SAR images are
used, including both ascending and descending orbits (blue
boxes in Fig. 2). The Copernicus DEM with 1 arc second
resolution is used for the topographic phase removal. Consid-
ering the complex terrain and relatively dense vegetation, we
generate interferograms with the nearest 10 sequential con-
nections, and with roughly one-year temporal baselines. Each
interferogram is multilooked by 9 and 3 looks in the range and
azmuth directions, respectively; and filtered by a Goldstein
filtering with a strength of 0.8.

3.3. Preliminary Results

Here we present the preliminary landslide detection and mon-
itoring results of the Luoshui-Baini section, a small area with
known dense distribution of landslides (green box in Fig. 2).
Fig. 3 shows the deformation rate map and the displace-
ment time series of some representative points. It is evident
that the ascending and descending tracks have different mea-
surement sensitivities to deformation and different noise lev-
els, underlining the necessity of multi-source integration.
Fig. 4 shows the landslide detection result. The mosaic
method is used for comparison, with a threshold value of 3
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Fig. 3. Deformation rate maps and displacement time se-
ries. (a-b) are deformation rate maps derived from ascending
and descending Sentinel-1 data, respectively. The location is
marked by the green box in Fig. 2. (c-f) are displacement
time series at point c-f in (a-b), respectively.
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Fig. 4. Detected suspected landslides by the mosaic method
with manually selected thresholds and the automatic MIID-
DST method.

o, which is manually adjusted according to the demonstration
area. The mosaic method alone detected 23.97% of defor-
mation pixels under the adopted threshold, MIID-DST alone
detected 18.81% of deformation pixels, and both methods to-
gether detected 57.22% of the pixels. Overall, the pixels of

landslides detected by both methods are highly consistent,
partly due to the manually selected thresholds for the mosaic
method and the limited evidence used for MIID-DST, which
is only two. The pixels detected by the mosaic method only
exhibit two distinct areas on the immediate sides of the river
that show no obvious signs of deformation in the displace-
ment time series, while the rest are irregularly distributed with
no clear physical meaning. In total, our method detected
about 68 landslides in the demonstrated region, encompass-
ing landslides that have been sliding consistently for nearly a
decade (Fig. 3(d)), as well as those that have ceased sliding
in the last few years (Fig. 3(f)).

4. CONCLUSION

In this paper, we propose a novel method for multi-source
InSAR integrated landslide detection based on the Dempster-
Shafer evidence theory. The method could address the defi-
ciencies of existing methods caused by ignorance of obser-
vation uncertainties. We applied the method to a decadal
Sentinel-1 InSAR time series along a section of the Jinsha
River. Expansion to the entire river basin and to incoporate
ALOS-2 data is undergoing.
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