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Joint seismic and geodetic analyses revealed that the 2025
moment magnitude (My) 7.8 Mandalay, Myanmar, earthquake
ruptured ~510 km of the Sagaing fault, with a sustained
supershear rupture extending ~450 km on the southern branch.
Far-field Mach waves and near-field ground motion confirmed
the supershear nature. This exceptionally long supershear
rupture caused building collapse and soil liquefaction, as
observed in satellite imagery, offering insights into the damage
potential of such ruptures in urban areas. Sustained supershear
propagation was facilitated by the fault's linear geometry,
prolonged interseismic quiescence, favorable energy ratio, and
pronounced bimaterial contrasts across the fault interface.
These findings underscore the roles of fault structure, stress
accumulation, and material contrasts in governing rupture
dynamics, demonstrating that large-scale supershear
propagation can occur in interplate continental fault systems.

At 12:51 p.m. local time on 28 March 2025, a moment magnitude (My,)
7.8 earthquake struck near the city of Mandalay, Myanmar. Situated
at the junction of three tectonic plates—the Indian (IN), Eurasian (EU),
and Burma (BU) plates (I, 2)—Myanmar is subject to high seismicity.
The central longitudinal axis of the country, home to both the major
economic center of Mandalay and the political capital NayPyiDaw,
coincides with the boundary between the BU and EU plates (Fig. 1A).
The right-lateral strike-slip Sagaing fault, which marks the bound-
ary, spans ~1400 km and accommodates a relatively high slip rate of
~20 mm/year (3, 4). In the 20th century, the Sagaing fault generated
at least seven magnitude (M) > 7 earthquakes along different segments
(Fig. 1A), with the exception of a seismic gap between Mandalay and
NayPyiDaw (Fig. 1A) (2, 5). The 2025 Mandalay earthquake ruptured this
long-standing seismic gap. The epicenter was located near Mandalay,
and early reports indicated a bilateral, north-south (N-S)-oriented rup-
ture (6). According to data compiled by the Democratic Voice of Burma,
the earthquake resulted in 4355 confirmed fatalities, 210 people reported
missing, and 7830 injured.

To obtain timely and comprehensive fault rupture details about the
earthquake, we collected global seismic data and applied the slowness-
enhanced back-projection (SEBP) method (7). SEBP enabled us to resolve
the spatiotemporal evolution of high-frequency (HF) radiators along
the fault during the mainshock. We also derived coseismic ground
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deformation using synthetic aperture radar (SAR) and optical imagery
from the Sentinel-1, LuTan-1, ALOS-2, and Sentinel-2 satellites. These
deformation observations, in combination with global and local seismic
datasets, were jointly inverted through finite fault inversion (FFI) (8, 9)
to reconstruct the slip distribution, rupture history, and slip vectors
across the fault. Our integrated analysis of SEBP and joint FFI results
revealed that the earthquake ruptured the subvertical Sagaing fault in
a bilateral manner along the N-S direction. The northern branch rupture
was relatively minor, with an approximate length of 60 km and an aver-
age rupture speed of 0.9 km/s. By contrast, the southern branch exhibited
an unusually fast rupture, propagating ~450 km at a speed of 5.0 km/s,
exceeding the local shear wave velocity and therefore classifying it as a
supershear rupture. We confirmed the supershear nature of the southern
segment by identifying Mach waves and Mach cones in the seismic wave-
field and by analyzing ground motions recorded at a near-fault station.

Owing to the ongoing civil conflict in Myanmar, field investigations
and postevent damage assessments have been substantially constrained.
To address this limitation, we generated damage proxy maps (DPMs)
and analyzed them in conjunction with other satellite radar imagery.
DPMs highlight regions where the radar backscattering characteristics
changed anomalously relative to their typical background variation,
indicative of potential structural damage (10, 11). Optical satellite images
revealed building collapses in urban areas and widespread secondary
hazards (e.g., soil liquefaction, landslides), which aligned with regions
of high DPM values. This study offers a detailed characterization of the
prolonged and devastating earthquake, providing a set of observations
that can serve as a reference for postevent hazard assessment.

Rupture kinematics resolved by SEBP and joint FFI

The SEBP analysis revealed an asymmetrical bilateral rupture propagat-
ing in the N-S direction. The HF radiators closely followed the surface
trace of the Sagaing fault (Fig. 1A and figs. S1 to S9). All three arrays
consistently indicated a fast rupture speed of 4.8 to 5.0 km/s on the
southern branch (Fig. 1C; figs. S2B, S4B, and S6B; and movies S1 to S3).
The length of the southern rupture segment was ~450 km. The speed
substantially exceeded the local shear wave speed in the crust above
depths of 20 km (2.5 to 3.7 km/s; fig. S10 and table S1) (5), suggesting
supershear rupture. By contrast, the northern branch exhibited a shorter
and slower rupture. Based on SEBP results, the northern rupture ex-
tended ~60 km with an estimated average speed of 0.9 km/s (12). The
rupture speeds resolved by the three arrays showed greater variability,
ranging from 0.9 to 1.7 km/s (figs. S2B, S4B, and S6B). This variation
likely reflects uncertainties introduced by the relatively weak HF radia-
tion from the northern branch, attributable to its slower rupture speed
and interference from the southern branch’s signal (13). We validated
the speed measurements by applying back-projection to synthetic seis-
mograms generated by a bilateral model with a subshear northern
branch and a supershear southern branch (12) (figs. S11 to S13). The
recovered southern speeds were 8 to 20% lower than the input value,
whereas those of the northern branch were underestimated by 30%
(figs. S11 and S12). Although such underestimation may be less pro-
nounced in real earthquake back-projection, it suggests greater uncer-
tainty in back-projection results for the northern branch. Nevertheless,
the synthetic back-projection confirmed the supershear nature of the
southern rupture and the subshear nature of the northern one.

The joint FFI results indicated that the rupture was predominantly
right-lateral strike-slip (Fig. 2C and movie S4). The coseismic slip dis-
tribution aligned well with the HF radiators (Fig. 1C); north of the epi-
center, slip extended ~60 km, whereas the southern rupture extended
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Fig. 1. Overview map and rupture process. (A) Back-projection (BP) results and active faults (black lines). (2). Colored
symbols represent HF radiators imaged by three seismic arrays (see legend). Symbol size is proportional to beam power,
and color indicates rupture time relative to the mainshock origin time (the lower legend). White triangles denote the major
cities along the Sagaing fault. The magenta line denotes the surface rupture identified according to the ground
deformation. (Inset, upper left) Locations of the three arrays. (Inset, upper right) The regional tectonic map. Colored dots
indicate historical seismicity from 1 January 1990 to 3 April 2025, color-coded by hypocenter depth (the upper legend). Dark
red lines mark plate boundaries (1, 2). The red box highlights the source region shown in the main image. Cyan triangles
denote strong motion stations. Purple bars denote rupture zones of historical M 7 earthquakes in the 20th century, with
event names and magnitudes listed in table S3 (2). BU, Burma plate; IN, Indian plate; EU, Eurasian plate. (B) Moment rate
function illustrating the temporal evolution of seismic moment release. (C) Rupture velocity from SEBP and comparison to
the FFI. Symbols mark the timing and location of HF radiators. Locations are shown as along-fault distance relative to the
hypocenter, with positive values to the north and negative values to the south. The red solid line indicates the best-fit
rupture front, with standard deviation (+1 &) outlined by dashed lines. The background colormap represents the maximum

slip rate at each along-strike position from the FFI.

~450 km. Near the hypocenter, the fault dips 65° to the east, whereas
along the southern branch, it steepens to 80° [see also (12)]. Slip was
concentrated at shallow depths: About 75% of the seismic moment was
released between 0- and 15-km depth, with a peak slip of ~7.9 m. The
total seismic moment was 6.37 x 10%° N-m, corresponding to a moment
magnitude of My, 7.8. Most of the moment release occurred within the
first 100 s (Fig. 1B). Rupture duration exceeded the typical value pre-
dicted by the global scaling relationship [~40 s (14)] but was compa-
rable to that of some M, 7.8 strike-slip events, such as the 2001 Kunlun
(15), 2013 Scotia (16), and 2023 Tiirkiye earthquakes (77). Our model
successfully reproduced static displacements observed in SAR and
optical satellite data (figs. S14: to S16) and provided good fits to tele-
seismic and local strong-motion recordings (figs. S17 to S22), including
at station NPW, located just 2 to 3 km from the fault (figs. S21 and
S22). Nine additional inversions using different initial models yielded
minor standard deviations in both objective function values and co-
seismic slip distributions [(12); fig. S23], confirming the robustness of
our solution.

In the back-projection images, we observed that the HF radiators
extended farther along the southern branch than mapped surface fault
traces (Fig. 1A). The slip model revealed that the southern segment
between 420 and 460 km hosted coseismic slip that did not reach the sur-
face, thereby accounting for the discrepancy in rupture extent.
Additionally, several southern radiators observed after 90 s exhibited
a westward spatial bias relative to the fault trace, likely caused by
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traces, consistently forming a 2- to 3-km-
wide zone along the fault (Fig. 3 and
fig. S25). This pattern helps delineate the
extent of off-fault damage and reveals
widespread surface destruction beyond
the primary rupture zone. By integrating
building footprint data with hazard mod-
els from the US Geological Survey (USGS)
and using a causal Bayesian network to
model seismic multihazards and their
impacts (12, 20), we generated three
high-resolution (45 m) hazard probabil-
ity maps for building damage, liquefac-
tion, and landslides, respectively (Fig. 3
and figs. S26-S28). Building collapses
were observed in Mandalay, with high
landslide potential identified at Sagaing
Hill and high soil liquefaction potential in the Irrawaddy floodplain
and the city’s southeastern areas (Fig. 3). These findings underscore
the multiscale mechanisms underlying seismic impacts and demon-
strate the effectiveness of satellite-based seismic multihazard and im-
pact assessments, particularly in regions where on-the-ground access
is limited.

Validation of supershear rupture

We further validated the southern supershear rupture using surface
wave observations. As proposed by (21), a supershear rupture exhibits
distinct characteristics in the far-field surface wave field: within spe-
cific regions, waves from different parts of the rupture arrive simulta-
neously and interfere constructively, simplifying the Rayleigh and Love
waveforms. This results in a high degree of similarity between the
waveforms of the large supershear rupture and those of a smaller,
colocated event (hereinafter referred to as an empirical Green’s func-
tion, EGF). These regions of constructive interference are known as
Mach cones, with the recorded surface waves referred to as Mach
waves, and the angles between the Mach cones and the rupture direc-
tion termed Mach angles (12). We collected 76 Rayleigh waveforms to
identify Mach waves and cones. To minimize surface wave dispersion,
seismograms were bandpass filtered to 15 to 25 s following (21, 22).
The EGF was a My, 5.1 event that occurred north of the mainshock
epicenter with a similar focal mechanism (EGF 2, table S2 and fig. S24).
We quantified waveform similarity using standard cross-correlation
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showed that a rupture propagating at 3 km/s could
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provide further constraint on rupture speeds, we in-
tegrated the acceleration waveforms twice to obtain
displacement time series (Fig. 2E). Near-fault dis-
placement records are known to be sensitive to slip
on nearby fault segments (33). We identified the
onset of significant horizontal ground displace-
ment and interpreted it as the approximate arrival
of the rupture front at the fault patch near the sta-
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tion. Motions in the N-S component began as early
as ~50 s (Fig. 2E and fig. S29), corresponding to an
estimated rupture speed of 4.9 km/s, given the sta-
tion’s epicentral distance of 246 km. This represents
a lower bound on the average rupture velocity from
the hypocenter, as we ignored undetectable fault
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74’ slip, the 2- to 3-km distance from the fault to the
station, and the vertical rupture propagation within
the fault. Taken together, these complementary ob-

Fig. 2. Ground deformation and slip model. (A) East-west (E-W) ground deformation. The zoomed-in inset
presents the vertical ground deformation with full coverage shown in fig. S32C. Inverted triangles denote
major cities along the fault. The black triangle indicates the seismic station GE.NPW, and the arrow shows
the FP direction (N172°E). The deformation reference point is set at (N20.0°, E94.6°), outside the figure
extent. (B) N-S ground deformation. Purple boxes outline the boundaries of the fault model used in the joint
FFI, with solid lines denoting the upper fault boundaries and dashed lines representing other boundaries.

(C) Spatial distribution of final slip (color scale), rupture initiation time (black contours in seconds), and rake
angle (cyan arrows) along the fault. Strike and dip angles for each fault segment are labeled at the top.

(D) Comparison of FP (red) and FN (blue) velocity seismograms recorded at GE.NPW. Waveforms are
obtained by integrating the raw acceleration data and removing baseline drifts. The time axis is referenced to
the earthquake origin time (28 March 2025, 06:20:52 UTC). (E) Ground displacement time series at GE.
NPW. N-S (red) and E-W (blue) components are shown. The bold dashed line marks the onset of substantial
ground deformation, occurring 50 s after the origin time. Displacements are calculated by integrating the

servations, including SEBP imaging, far-field Mach
wave detection, near-field amplitude characteristics,
and displacement-based rupture timing, collec-
tively support the existence of a fast-propagating
supershear rupture along the southern segment of
the fault.

Supershear ruptures controlled by bimaterial
effect, energy ratio, and fault geometry

The 2025 Mandalay earthquake exhibited two re-
markable features: an exceptionally early transition
to supershear rupture and a prolonged supershear
propagation spanning at least 400 km, making it

velocity seismograms and applying drift corrections.

coefficients (CCs) (12). On the southeast side of the epicenter, wave-
forms from the mainshock and the EGF exhibited high similarity (CCs >
0.85) at several Australian stations (e.g., AU.GVL, AU.STKA; Fig. 4C). On
the southwest side, Mach waves were observed at stations in South Africa
and Madagascar (e.g., [I.SUR, II.ABPO; Fig. 4C). The Mach angle was 30°
to 60°, which, assuming a local S wave speed (V) of 3.2 km/s, suggests a
rupture speed of 3.4 to 5.8 km/s. This range is consistent with the rupture
speed measured by SEBP, though minor uncertainties may arise from Vs
variations, rupture complexity, and rupture speed fluctuations.
Theoretical analyses and laboratory experiments (23, 24) have
shown that a key characteristic of supershear ruptures is a dominant
fault-parallel (FP) component in the near-fault ground velocity field,
which exceeds the fault-normal (FN) component. This FP dominance
has been observed in several reported supershear events, including
the 2002 Denali, 2020 Caribbean, and 2023 Tiirkiye earthquakes
(25-29). The seismic station GE.NPW, located 2 to 3 km from the fault
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one of the longest documented supershear earth-

quakes to date. Several mechanisms have been pro-

posed to explain supershear transition, i.e., how
rupture accelerates to the supershear regime. The classic Burridge-
Andrews mechanism (34, 35) suggests that the rupture front at a sub-
Rayleigh speed is preceded by a daughter crack, whose speed is the S
wave speed at the beginning and accelerates to a stable supershear
speed after a certain distance. Given a high initial shear stress and/or
a weak fault, rupture can also directly transition to the supershear
regime before apparent formation of a daughter crack (36). In addition
to the assumption of uniform properties, the heterogeneities of fault
strength and stress (36-38), free surface (39), fault roughness, cur-
vature, or bending (40, 41), fault step-overs (42), damage zones (43),
and bimaterial effects (44-46) may also promote supershear transition.
The southern segment of the Mandalay earthquake shared several
similarities with the 2018 M, 7.5 Palu event but exhibited a higher
rupture speed (5 km/s compared with 4.1 km/s in the Palu event). This
exceptionally long and fast rupture offers a valuable opportunity to
assess theoretical and numerical models of supershear propagation.
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stress perturbation behind the crack tip reverses
and becomes extensional rather than compressional
(44-46, 50). Conversely, rupture propagating in the
positive direction (the moving direction of compli-
ant medium) tends to experience increased normal
stress ahead of the rupture tip, which favors sub-
shear or nonsustained supershear behavior, explain-
ing the slow rupture observed along the northern

segment. However, dynamic simulations also predict
a longer rupture extension in the positive direction
compared with that in the negative direction (51, 52),
contrasting with the shorter northern branch of
the Mandalay earthquake. This discrepancy could
be explained by the five M > 6.8 events that occurred
in the north between 1946 and 2012, which reduced
stress accumulation (2) (Fig. 1A, table S3).

The observed rupture speed of 5 km/s was anoma-
lously fast, corresponding to rupture speed/shear
wave speed (V;/V5) ratios of 1.6 to 1.8, exceeding the
Eshelby speed of V/2 s V, expected for rupture in a
homogeneous medium (53). It also surpassed the
predicted upper limit—the compliant side’s com-
pressional wave speed (V,)—suggested by numerical
simulations for the material contrast level across the
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Fig. 3. Multihazard analysis of the earthquake region along the Sagaing fault. (A) DPM with white-to-
red scale indicating increasing damage probability along the fault. (Inset) An enlarged view of a high-DPM
zone near the fault. (B) Hazard probability distribution in Mandalay (light-to-dark scale), including building
damage (top), landslides (middle), and liquefaction (bottom). Background layers show population density
(white-to-blue scale) and Gaofen-1 optical imagery. (C) Damage interpretation in Mandalay derived from

Jilin-1 optical imagery.

The Sagaing fault separates the Central Myanmar Basin to the west
from Shan-Thai Block to the east (figs. S30 and S31). The former is
characterized by a thick (~15 km) low-velocity layer consisting of
Cenozoic basin sediments, and the latter features granite and the
Mogok metamorphic belts with minimal sediment cover (5, 47). The
Vs structure along the Sagaing fault (5) reveals a pronounced mate-
rial contrast across the fault within the shallowest 10 km, where most
coseismic slip occurred. The eastern side exhibits V values of 2.8 to
3.7 km/s, whereas the western side shows lower V5 values of 2.2 to
3.3 km/s. By estimating the average velocity within the top 10 km as
Vs _mean=10/2(dz/V5), we obtained a Vs mean 0f 2.9 and 3.3 km/s for the
western and eastern sides, respectively. The difference in Vs suggests
a difference in rock stiffness (48), a bimaterial contrast that influences
rupture speed (44-46, 49). Given the right-lateral strike-slip nature of
the Sagaing fault, the southward rupture propagated in the negative
direction, i.e., the moving direction of the stiff medium. Laboratory
experiments and numerical simulations have shown that, in this direc-
tion, normal stress initially increases behind the rupture tip and de-
creases ahead of it. As the rupture propagates, the normal stress
reduction becomes more pronounced, causing a broader region ahead
of the rupture tip to yield simultaneously and accelerating the rupture
to supershear speed. Once the rupture reaches supershear, the normal
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Sagaing fault [Vs,compliant/Vvs,stiff = 0.85; (46, 50)]
(fig. S31). These observations imply that factors be-
yond the bimaterial effect may have also contributed
to the extreme rupture acceleration. One potential
contributor is the poroelastic effect. Along the bi-
material Sagaing fault, the compliant side consists
of porous sedimentary rocks, whereas the stiffer side
comprises less porous metamorphic rocks (54). This
material contrast could enhance the bimaterial ef-
fect and further promote rupture acceleration (55).
Additionally, an elevated stress level due to the long
period of seismic quiescence as well as the free-
surface effect (39, 56) may have played roles. Near-
fault investigations, including mapping of distributed
deformation, rock sampling from boreholes, and
cross-fault seismic reflection experiments, will help
evaluate these possibilities.

The ratio between the dissipated and potential
energies (G¢/Gyp) is another key factor controlling
rupture propagation (57). Here, G. represents the fracture energy dis-
sipated near the rupture front, whereas G, denotes the static elastic
energy release rate for strike-slip rupture with a finite rupture width
(12). Theory and numerical simulations have demonstrated that per-
sistent supershear propagation is permitted when G./Gy < 0.7 is
satisfied on a purely strike-slip fault (57). The southern segment of the
Sagaing fault, between Mandalay and NayPyiDaw, has remained seis-
mically quiescent without experiencing any M > 7 earthquakes since
1839 (Fig. 1A) (2). This prolonged interseismic period results in con-
siderable prestress accumulation and slip deficit. Because Gy depends
more strongly than G. on slip deficit (12, 56), the energy ratio G./Go
decreases with longer interseismic intervals. Thus, the extended seis-
mic quiescence led to another favorable condition for sustained su-
pershear rupture.

Fault geometry also has an important influence on earthquake rup-
ture propagation. We found that the southern segment of the Sagaing
fault exhibits a remarkably simple and linear geometry, which is con-
ducive to persistent supershear propagation (58). The three-segment
fault model used in the joint FFI incorporated a total strike variation
of only 9° (Fig. 2). From the epicenter to (21.51°N, 95.99°E), the first
segment extends ~55 km with a strike of 179°. The following 110-km
segment to the south adopts a strike of 176° and then the strike shifts
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Fig. 4. Far-field Rayleigh wave Mach cones and waves. (A) Mach cone distribution.
Colored areas within the green boundaries mark the Mach cones, where Mach waves
have been identified. Seismic station locations are shown as triangles, with color
indicating the CCs between 15- and 25-s Rayleigh wave displacement seismograms
from the M,, 7.8 Mandalay mainshock and the M,, 5.1 EGF event. (B) Azimuthal
distribution of waveform similarity. CCs between 15- and 25-s Rayleigh waveforms of
the mainshock and EGF, plotted as a function of station azimuth. The black dashed
line marks the rupture direction of the southern segment. Green bands denote the
azimuthal extent of the identified Mach cones, accounting for uncertainties in
Rayleigh wave phase and rupture velocities. The red dashed curve indicates the
envelope that delineates the distribution pattern of CCs. (C) Representative Mach
waves. Bandpass-filtered vertical displacement Rayleigh wave seismograms for the
mainshock (blue) and EGF (red) at selected stations. Station name, azimuth (azi), and
epicentral distance (dist; in degrees) are annotated.

to 172° for the next 220 km. Near the southern terminus, the strike
rotates slightly to 170°. Whereas this three-segment model is a simpli-
fied representation of the fault based on ground deformation (Fig. 2B),
detailed inspection of the surface trace indicates that the curve of the
fault is continuous without any sizeable kinks or step-overs (fig. S32).
Numerical simulations and laboratory experiments by (59, 60) dem-
onstrated that ruptures can propagate at supershear speeds across
fault bends of 10°, whether on the extensional or compressional side,
without any reduction in propagation velocity. Therefore, the geo-
metrically simple and linear structure of the Sagaing fault likely helped
to sustain supershear rupture propagation, consistent with observa-
tions in other large events (58).
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