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Abstract: Spaceborne Interferometric Synthetic Aperture Radar (InSAR) enables surface elevation measurement
and deformation monitoring by measuring phase differences along the radar line of sight. However, meeting the

future demand for higher-precision measurements remains challenging: analytical models linking InSAR system
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design parameters to measurement accuracy are still limited by incomplete key parameters and insufficient or
unclear physical constraints. These limitations restrict the development of next-generation InSAR technology.
This study examines the complex multifactor coupling between system design parameters and measurement
accuracy. It provides a detailed analysis of the imaging mechanism and theoretical constraints of spaceborne
InSAR with spatial and temporal baselines and presents a spatiotemporal error model integrating multisource
decorrelation. The nonlinear relationship between baseline parameters and measurement accuracy is
quantitatively characterized, and a comprehensive evaluation framework is established based on key indicators
such as coherence, elevation accuracy, and coherent temporal baseline-based deformation sensitivity. Built on
top of these analysis, the concept and system architecture of very large baseline spaceborne InSAR are
proposed, and its performance is analyzed in detail. The associated technical challenges—including orbit
configuration, system design, synchronization, error correction, and phase unwrapping—are systematically
discussed. Potential applications of this type of InSAR system architecture in high-precision elevation,
deformation measurements, and distributed SAR systems are introduced. The proposed framework provides
theoretical support for the design of next-generation high-precision, multidimensional InSAR systems and is
expected to play a key role in the frontier of Earth science exploration and the safety assurance of major

national engineering projects.
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Fig. 1 Very large baseline synthetic aperture radar interferometry
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Fig. 2 Analytical equation for critical effective baseline (the gray
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Fig. 9 Relationship between average coherence and deformation measurement accuracy
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Fig. 12 Airborne DBF experimental verification results!*’
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Fig. 15 LuTan-1 imaging results before and after synchronous anti-interference processing®®l
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Fig. 19 Elevation errors of TanDEM-X and LuTan-1 under different land cover types with typical system parameters (see Tab. 4)

FN K it

oNISAR-L
®ALOS-2

1)

eSehtinel-1 0.50

AN K
&

&8 Z
X S| erraSAR-X r‘(} o o ®TerraSARX -
~ S ~ ~ =) 8 — —
35 / / /H S / B: s = B
1 5 10 15 20 25 30 1 5 30 1 5 10 15 30
At (d) At ( ) At (d)

20 ANEIBB - ARSI AR Tk A T 3 A RS 2

Fig. 20 Deformation velocity measurement accuracy affected by coherence under different frequency bands and different land cover types



16 K AR (R D)

H15%

e s, FRATTHE 5T L BRI S BL RS 22,
WER1AT R, RIMEHRKHXNESZ<-23 dBEE
i R HH<8 dif, SYRBORE BT O T LR B, X & H

THFRAMAAIRZWEO T, SEBURT MEFFER
af, BB, MHFE R AL R 2218 B TR AZ 1R 22 A1
SN 2

FOTI A H .
a I
—~~ // L
Z & /
N (Q' L S
a L '
Z. ?%\ S~ - /
100 15 20 25 30 1 5 10 15 20 25 30
At (d) At (d)

L-band is better I . Nl S-band is better

-1.0 -0.5

0 0.5 1.0

Ao, (mm/a)

21 LB Su B Al A 5 22 5
Fig. 21 Accuracy difference between L-band and S-band

6.3 W INSARRL

VER—RE&ZF I FEIEE ) AR
ZR, A SARZRS N B BFInSARFE AR M RER
WE PR A T E AR, AR A IR LR InS AR 1] 2 1%
B R TR 30 B N I A% 0 T
SN HER . REHUFZH, SR
A HUHIIE I A R BT G ] AR 5 2 R S — 1A
TRAEZE, 5 3Emi) 2 B MMR 2 B, (R B i
N —HE S A T, TR AR B R A AR
P BTEREE, 5L KRS A OV 19X 25 1 ek
Hent. TFESZESF, PlLuTan-1°9 Harmony®'/4§
SRR, B S ASRR A R, SREGHE K R 2
A S A B I S AR D B S AR M R SR, S
“—RZH. ZREME B, SRR RS EE
HEIRFI R SR, ZARHAH R RA K
JRPRAE A, JUHAE = e AR Ak, KT 2 A
LB SR ENERT), REfER 4R
PR, ScBlHhER =42 sh i w2 AL .

LuTan-1 R GifE N/ M ASARRSE, 1£6.171—
6.2°1 T AT L HR N T . RS ERE S, H
SR BT I TR R R FH o T BT 7 0 S B
B X LuTan-1 TEFRAEPIMR, K% ETENE
SRR, EHU R RIS E B R A
BB XA, #EATDEM™ St AR = 5. 45 REW],
FEMNR X 3k LuTan-1 2 DEMP= Sk FE 76 2 5
2.9 mo FATTEE L E 7 A T XA D
XA F LuTan- 15048 £ sl DEM ™ i (K122), 5
SRTMPJDEM= i #i AT % b, KEFEH2.6 mo 1S
¥R EFE S LuTan-1 RN R IR RS

PEPEAG I L2, DL a4 K A T AT X O S 2
X, #EHLuTan-1 TR EHGE CBT SRET K
HARAE L O BAR IR . 53 R HSBAS-InSARA
PS-InSAREHEAT T B [0 7 51 3 SAR #h R JE AR
BRI (E23), RGPS S Tk, 45
RERW, LuTan-11KEHF 5T SARM KL
A 3 SR R P AT IA5.7 mm /yr (SBAS-InSAR)
3.4 mm/yr (PS-InSAR).

i b, BRKIELLInSAREEZ 2870 A sRSAR M
ReiAb Az o B, B HE S B HInS AR IA) i 4
B mRERE . 2 R OGRS, fEHhERE} 2
BT SR MR K e 3 g A S AU A A T B AR
AR5 NN E
T ZEiE

AHE TR A R BB A (A JR 2k 5 B I ) 2k

T AR ETIEARS, RITEAEBEIRL R
fro fEBLEERE b, MR 7RG ZIRRAT EERR S

IR ZE ST

Kl 22 £:F LuTan- 144 (IDEM™= i
Fig. 22 DEM product based on LuTan-1 data



1 T ERELERTIWSARBE S i) 17

40°15'N 40°05'N

40°00'N e
40°00N 8 :

39°55'N

112°45'E 113°00'E 113°15'E 112°50'E 112°55'E 113°00'E 113°05'E

(a) SBAS-InSARJ7i% (b) PS-InSARJ7¥%
(a) SBAS-InSAR method (b) PS-InSAR method

23 W PEE KIE T X 5 T LuTan- 1848 B AL 45 50

Fig. 23 Deformation results based on LuTan-1 data in the mining area of Datong, Shanxi’*?

R B, L T AT S W BRI 2 wm:$—9,BJSBi (A1)
MR RS, @Y T B R R, %h R 0, [BL[> B}
FATE ERNESE . ETMTREEEOE e, By RERGKE, BN ALK,
AR PR R 2 OCHR E BE AR A - %Eﬁaé%‘ctk PRI F ATy BN

FELInSARMIMES P, 7ERERERE b XS L 27 A e h

RF RS, R T AR TR /w@emQ%;33>w

TGO PR . BE, S5 SRR 5 R 76 g o (A2)
vol — hy

SR, TLARY TR L IS ARAE RS 1
L AR WO R 53 45 IS AR JR G 5 s /ﬁ@ﬁ

M. FRBFFRBCR T N —UER . 24k i 0 o i
RInSARRSH )y R THROGHS Ml sy JoF ABUHSE, hOVEBIAM, e ()N
BRRL L BV 15 [ 5 Bk TR e 4 o s 2 S a0 FEBR AL JARBEBURANL, o0 (2) A& MBS HL GV

S AR S S SR FEHRA, RN
R RENELEAIERS o) = [-200 225 4y
HTHE DLEBF A H A8 5 1 25 (A R A T = Horb, BONHLREBECEAEBE TR B ARV O R A LA
B H AL A T ygeom N EBF A H 22 & 173 [ R AH T s o8
f (Q ) = TYother * Vvol * Ygeom
hy
/exp (_ o he —z) exp (j%QBrg . .Q'%’COS(H—T)> &z
cos csinf
= Yother * 0 I . (]. — .Q)
/exp(—?-ﬁ- v Z) dz
cos
0
Py ePthv _ 1
= Yother * (Fl : epoth) (1-0) (A-4)
Hr, HOHE ULEBE N B A8 & 1) 5 F2 0 25 i
25 J‘iﬁﬁ
Pozm’ o csin 6 o (A-5)
b= oy -
P = jdm By cos(6 — 7) S+ 2 dmtan(6 — ) By - @

csinf cos 6 ARSCAE B AT AR AR ZE X TR AR 1R 22 I DT R



18 LR (P F15%

AN RS L B 22 RO FE AR 7 3 B 2 deP1h~ -1
[ﬁgi*ﬁjl:i%%adec: dYvol P efihy 1 Py ) ebohy 1

2 a0 k1P T an

1= f2(0) i _ jAmBycos(0 —71) | (PoP? — Py) e +1
Odee =\ 2L F2(02) (A-6) - gcsino ' P2 (ePohv — 1)
e (4-8)
CAEBF Ay 48 & 1) 28 18] RAH T b 8 AR 4k
B csin 6 . 1—f2(02) %)y
o= gy o | () 40 a5(2)
-1. =7
S5, MIELIEBF [ A5 R R SR R & g?) _ d02 (A-9)
W72 (doy)/(d2) . Frp, DAEBF A H B & (144K SLF3(2) (1 - f;(ﬂ))
St RAT AR N 2Lf2(12)
gh 5 (A1) K (A-9), RAVSEILIEBF A [ A5 8 s AT 2 LR i b 7 72«
d (1 - f2(9)>
dop —csinf 1—f3(0) csind 2Lf*(12)
A2 dntan(d — 7) B 822 < 2Lf2(02) > T Imtan(0 1) By a0
L]
B —csinf 1— f2(02) csinf a0
" dnmtan(0 — 7) By 822 < 2L f2(02) ) T Imtan(0 —1)By2 - 2(2)
(@ )
2Lf2(12)
df(£2)
B —csinf N 1— f2(02) 1 a0
~ Amtan(f — 7)Byy | 22 ( 2Lf2(02) ) + n 1— f2(0)
217 ()
d’YVOl PO eplhv -1
B —csinf 1 (1—f2(!2)> Tother [ an 19— <p1 " P, — 1)}
T 4w tan(0 — T)Brgﬂ 04 2Lf2(0N) 1_ fz(Q)
3
210\ (577 )
B —csinf 1 1— f2(02)
" dntan(d — 7)By2 | 2 ( 2Lf2() )

janBygcos(0 — 1) [ (PoPE— Py) e +1 Py elthv —1
Tother csin® ( PZ (cPohn — 1) (1—-0) - (Pl ' eph_1>
+
1- f2(2)
217 (5r7ar )
_—F (o5 9(2)
T~ <n M ) (A-10)



1 FAEHE.: HKELERTWSARM S 514 19
csinf
F= dmtan(d — 7) By,
jeos(f — 7) (PP — Py) eP 41 Py ePihv 1
Yother * . 2 - Poh. (1—9)— o TPh a1
Ftan(0 — 1) P? (ePohv — 1) P, ePohv — 1
Q =
9(12) 5L ()
ﬁiﬂ‘j ZIKYEQI{/E%E % gﬁﬁ*«}%%éﬂ‘] {ﬁl}ﬂj]—l: Remote Sensing of Environment, 2020, 249: 111983. doi: 10.

SERIN, I HASE T A EEIE EE L. R EBIR
FHE BRI )\ B T BE K 30, AR BRI

FIZEHER PIA 1E & P AT AR 2 b %

Conflict of Interests The authors declare that there is no

conflict of interests

(1]

2]

B8l

4]

(6]

[7]

(8]

(9]

& Z XXM
HOWARD H D, ROBERTS S C, and BRANKIN R. Target
detection in SAR imagery by genetic programming[J].
Advances in Engineering Software, 1999, 30(5): 303-311.
doi: 10.1016/S0965-9978(98)00093-3.
KIRK J C, DARDEN S, MAJUMDER U, et al. Forty years
of digital SAR and slow GMTI technology[C|. 2014 IEEE
Radar Conference, Cincinnati, USA, 2014: 64-69. doi:
10.1109/RADAR.2014.6875556.
HENDERSON F M and LEWIS A J. Principles and
Applications of Imaging Radar[M]. 3rd ed. John Wiley and
Sons, 1998.
MATSUOKA M and YAMAZAKI F. Use of satellite SAR
intensity imagery for detecting building areas damaged due
to earthquakes[J]. Earthquake Spectra, 2004, 20(3): 975-994.
doi: 10.1193/1.1774182.
GRAHAM L C. Synthetic interferometer radar for
topographic mapping[J]. Proceedings of the IEEFE, 1974,
62(6): 763-768. doi: 10.1109/PROC.1974.9516.
ZINK M, BACHMANN M, BRAUTIGAM B, et al.
TanDEM-X: The new global DEM takes shape[J]. IEEE
Geoscience and Remote Sensing Magazine, 2014, 2(2): 8-23.
doi: 10.1109/MGRS.2014.2318895.
FARR T G, ROSEN P A, CARO E, et al. The shuttle
radar topography mission[J]. Reviews of Geophysics, 2007,
45(2): RG2004. doi: 10.1029/2005RG000183.
VAN NATIJNE A L, BOGAARD T A, VAN LELJEN F J,
et al. World-wide InSAR sensitivity index for landslide
deformation tracking[J]. International Journal of Applied
Earth Observation and Geoinformation, 2022, 111: 102829.
doi: 10.1016/j.jag.2022.102829.
BEKAERT D P S, HANDWERGER A L, AGRAM P,
et al. InSAR-based detection method for mapping and
monitoring slow-moving landslides in remote regions with

steep and mountainous terrain: An application to Nepal[J].

(10]

(1]

(12]

(13]

(14]

15]

(16]

(17]

(18]

(19]

1016/j.rse.2020.111983.

MACCHIARULO V, MILILLO P, DEJONG M J, et al.
Integrated InSAR monitoring and structural assessment of
tunnelling-induced building deformations[J]. Structural
Control and Health Monitoring, 2021, 28(9): ¢2781. doi: 10.
1002/stc.2781.

ZEBKER H A and GOLDSTEIN R M. Topographic
mapping from interferometric synthetic aperture radar
observations[J]. Journal of Geophysical Research: Solid
Earth, 1986, 91(B5): 4993-4999. doi: 10.1029/JB091i
B05p04993.

MASSONNET D, ROSSI M, CARMONA C, et al. The
displacement field of the Landers earthquake mapped by
radar interferometry[J]. Nature, 1993, 364(6433): 138-142.
doi: 10.1038/364138a0.

ZEBKER H A and VILLASENOR J. Decorrelation in
interferometric radar echoes[J]. IEEE Transactions on
Geoscience and Remote Sensing, 1992, 30(5): 950-959. doi:
10.1109/36.175330.

ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic
aperture radar interferometry[J]. Proceedings of the IEEE,
2000, 88(3): 333-382. doi: 10.1109/5.838084.

ROSEN P A, HENSLEY S, WHEELER K, et al. UAVSAR:
A new NASA airborne SAR system for science and
technology research[C]. 2006 IEEE Conference on Radar,
Verona, USA, 2006: 8. doi: 10.1109/RADAR.2006.1631770.
CHANG Zhangiang, ZHANG Jianbo, GONG Huili, et al.
‘Maximal effective baseline’ for conventional SAR
interferometry[J]. International Journal of Remote Sensing,
2007, 28(24): 5603-5615. doi: 10.1080/01431160701227646.
KRIEGER G and MOREIRA A. Spaceborne Interferometric
and Multistatic SAR Systems[M]. CHERNIAKOV M.
Bistatic Radar: Emerging Technology. Chichester: John
Wiley & Sons, Ltd, 2008: 95-158. doi: 10.1002/9780470985755.ch4.
KRIEGER G, HAJNSEK I, PAPATHANASSIOU K P,
et al. Interferometric synthetic aperture radar (SAR)
missions employing formation flying[J]. Proceedings of the
IEEE, 2010, 98(5): 816-843. doi: 10.1109/JPROC.2009.
2038948.

KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-
X: A satellite formation for high-resolution SAR

interferometry[J]. IEEE Transactions on Geoscience and


https://doi.org/10.1016/S0965-9978(98)00093-3
https://doi.org/10.1016/S0965-9978(98)00093-3
https://doi.org/10.1016/S0965-9978(98)00093-3
https://doi.org/10.1016/S0965-9978(98)00093-3
https://doi.org/10.1016/S0965-9978(98)00093-3
https://doi.org/10.1109/RADAR.2014.6875556
https://doi.org/10.1193/1.1774182
https://doi.org/10.1109/PROC.1974.9516
https://doi.org/10.1109/MGRS.2014.2318895
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1016/j.jag.2022.102829
https://doi.org/10.1016/j.rse.2020.111983
https://doi.org/10.1016/j.rse.2020.111983
https://doi.org/10.1002/stc.2781
https://doi.org/10.1002/stc.2781
https://doi.org/10.1029/JB091iB05p04993
https://doi.org/10.1029/JB091iB05p04993
https://doi.org/10.1038/364138a0
https://doi.org/10.1109/36.175330
https://doi.org/10.1109/5.838084
https://doi.org/10.1109/RADAR.2006.1631770
https://doi.org/10.1080/01431160701227646
https://doi.org/10.1002/9780470985755.ch4
https://doi.org/10.1109/JPROC.2009.2038948
https://doi.org/10.1109/JPROC.2009.2038948

20

K AR (R D)

H15%

20]

(21]

[22]

23]

(24]

[25]

[26]

27]

28]

29]

(30]

(31

(32]

Remote Sensing, 2007, 45(11): 3317-3341. doi: 10.1109/
TGRS.2007.900693.

ROCCA F. Modeling interferogram stacks[J]. IEEFE
Transactions on Geoscience and Remote Sensing, 2007,
45(10): 3289-3299. doi: 10.1109/TGRS.2007.902286.
PARIZZI A, CONG Xiaoying, and EINEDER M. First
results from multifrequency interferometry. A comparison of
different decorrelation time constants at L, C and X
band|[C]. Fringe 2009 Workshop, Frascati, Italy, 2009.
HORST S, CHRONE J, DEACON S, et al. NASA’s surface
deformation and change mission study[C]. 2021 IEEE
Aerospace Conference (50100), Big Sky, USA, 2021: 1-19.
doi: 10.1109/AER050100.2021.9438290.

KELLNDORFER J, CARTUS O, LAVALLE M, et al.
Global seasonal Sentinel-1 interferometric coherence and
backscatter data set[J]. Scientific Data, 2022, 9(1): 73. doi:
10.1038/s41597-022-01189-6.

HANSSEN R F. Radar Interferometry: Data Interpretation
and Error Analysis[M]. Dordrecht: Springer, 2001. doi:
10.1007/0-306-47633-9.

RODRIGUEZ E and MARTIN J M. Theory and design of
interferometric synthetic aperture radars[J|. IEE
Proceedings F (Radar and Signal Processing), 1992, 139(2):
147-159. doi: 10.1049/ip-£-2.1992.0018.

BAMLER R and HARTL P. Synthetic aperture radar
interferometry[J]. Inverse Problems, 1998, 14(4): R1-R54.
doi: 10.1088/0266-5611/14/4/001.

TREUHAFT R N and SIQUEIRA P R. Vertical structure
of vegetated land surfaces from interferometric and
polarimetric radar[J]. Radio Science, 2000, 35(1): 141-177.
doi: 10.1029/1999RS900108.

BAMLER R and JUST D. Phase statistics and
decorrelation in SAR interferograms[C]. IEEE International
Geoscience and Remote Sensing Symposium, Tokyo, Japan,
1993: 980-984. doi: 10.1109/IGARSS.1993.322637.
BILLINGS S A. Parameter estimation: Principles and
problems(J]. Electronics and Power, 1981, 27(5): 413. doi:
10.1049/ep.1981.0202.

JOUGHIN I R, WINEBRENNER D P, and PERCIVAL D B.
Probability density functions for multilook polarimetric
signatures[J]. IEEE Transactions on Geoscience and
Remote Sensing, 1994, 32(3): 562-574. doi: 10.1109/36.
297975.

LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and
phase statistics of multilook polarimetric and interferometric
SAR imagery[J]. IEEE Transactions on Geoscience and
Remote Sensing, 1994, 32(5): 1017-1028. doi: 10.1109/36.
312890.

TOUZI R and LOPES A. Statistics of the Stokes

(33]

[34]

(35]

(36]

[37]

(38]

[39]

(40]

parameters and of the complex coherence parameters in one-
look and multilook speckle fields[J]. IEEE Transactions on
Geoscience and Remote Sensing, 1996, 34(2): 519-531. doi:
10.1109/36.485128.

TURNER II B L, LAMBIN E F, and REENBERG A. The
emergence of land change science for global environmental
change and sustainability[J]. Proceedings of the National
Academy of Sciences of the United States of America, 2007,
104(52): 20666-20671. doi: 10.1073/pnas.0704119104.
WANG Yanzhao, SUN Yonghua, CAO Xuyue, et al. A
review of regional and global scale land use/land cover
(LULC) mapping products generated from satellite remote
sensing[J]. ISPRS Journal of Photogrammetry and Remote
Sensing, 2023, 206: 311-334. doi: 10.1016/j.isprsjprs.2023.11.014.
KARRA K, KONTGIS C, STATMAN-WEIL Z, et al.
Global land use / land cover with Sentinel 2 and deep
learning[C]. 2021 IEEE International Geoscience and
Remote Sensing Symposium IGARSS, Brussels, Belgium,
2021: 4704-4707. doi: 10.1109/IGARSS47720.2021.9553499.
ROSEN P A, GURROLA E, SACCO G F, et al. The
InSAR scientific computing environment[C]. 9th European
Conference on Synthetic Aperture Radar, Nuremberg,
Germany, 2012: 730-733.

FATTAHI H, AGRAM P, and SIMONS M. A network-
based enhanced spectral diversity approach for tops time-
series analysis[J]. IEEE Transactions on Geoscience and
Remote Sensing, 2017, 55(2): 777-786. doi: 10.1109/TGRS.
2016.2614925.

PEPE A and LANARI R. On the extension of the minimum
cost flow algorithm for phase unwrapping of multitemporal
differential SAR interferograms[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2006, 44(9): 2374-2383.
doi: 10.1109/TGRS.2006.873207.

i, Ik, PRELTE, S5 2R A NInS AR A T
FERALTTIE[T]. M%e 43R, 2022, 51(12): 2440-2447. doi: 10.
11947/j.AGCS.2022.20210381.

LI Nan, CONG Lin, CHEN Chonghua, et al. An engineering
optimization method for distributed spaceborne InSAR
formation configuration based on multiple constraints[J].
Acta Geodaetica et Cartographica Sinica, 2022, 51(12):
2440-2447. doi: 10.11947/j.AGCS.2022.20210381.

ZERE, IARAE, XHERA, 55, LB THSAR TR s [0l
BB R AT ITVE[T]. W22, 2024, 53(10): 1873-1880.
doi: 10.11947/j.AGCS.2024.20230250.

LI Nan, WEN Junjian, LIU Yanyang, et al. An strictly-
regressive orbit optimization algorithm for L-band
differential interferometric SAR satellite[J]. Acta Geodaetica
et Cartographica Sinica, 2024, 53(10): 1873-1880. doi: 10.
11947/j.AGCS.2024.20230250.


https://doi.org/10.1109/TGRS.2007.900693
https://doi.org/10.1109/TGRS.2007.900693
https://doi.org/10.1109/TGRS.2007.902286
https://doi.org/10.1109/AERO50100.2021.9438290
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1038/s41597-022-01189-6
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1007/0-306-47633-9
https://doi.org/10.1049/ip-f-2.1992.0018
https://doi.org/10.1049/ip-f-2.1992.0018
https://doi.org/10.1049/ip-f-2.1992.0018
https://doi.org/10.1049/ip-f-2.1992.0018
https://doi.org/10.1049/ip-f-2.1992.0018
https://doi.org/10.1088/0266-5611/14/4/001
https://doi.org/10.1088/0266-5611/14/4/001
https://doi.org/10.1088/0266-5611/14/4/001
https://doi.org/10.1029/1999RS900108
https://doi.org/10.1109/IGARSS.1993.322637
https://doi.org/10.1049/ep.1981.0202
https://doi.org/10.1109/36.297975
https://doi.org/10.1109/36.297975
https://doi.org/10.1109/36.312890
https://doi.org/10.1109/36.312890
https://doi.org/10.1109/36.485128
https://doi.org/10.1073/pnas.0704119104
https://doi.org/10.1016/j.isprsjprs.2023.11.014
https://doi.org/10.1109/IGARSS47720.2021.9553499
https://doi.org/10.1109/TGRS.2016.2614925
https://doi.org/10.1109/TGRS.2016.2614925
https://doi.org/10.1109/TGRS.2006.873207
https://doi.org/10.11947/j.AGCS.2022.20210381
https://doi.org/10.11947/j.AGCS.2022.20210381
https://doi.org/10.11947/j.AGCS.2022.20210381
https://doi.org/10.11947/j.AGCS.2024.20230250
https://doi.org/10.11947/j.AGCS.2024.20230250
https://doi.org/10.11947/j.AGCS.2024.20230250

14

EARHAE . EKEA R T SARM & 54K 21

[41]

[42]

[43]

44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

SCHWEIGHART S A and SEDWICK R J. High-fidelity
linearized J, model for satellite formation flight[J]. Journal
of Guidance, Control, and Dynamics, 2002, 25(6):
1073-1080. doi: 10.2514/2.4986.

AL, SRIFEE, 22T, 55, 70 sUInS ARG BA TSRk 25 400 Al
AHXTPE B 2 [J]. Mz 244R, 2021, 50(5): 580-588. doi: 10.
11947/j.AGCS.2021.20200415.

SHAO Kai, ZHANG Houzhe, QIN Xianping, et al. Precise
absolute and relative orbit determination for distributed
InSAR satellite system[J]. Acta Geodaetica et Cartographica
Sinica, 2021, 50(5): 580-588. doi: 10.11947/j.AGCS.2021.
20200415.

MzPl, BIEAR, ki, 5 RREMSAREARKE@H[I]. &
IK2E4), 2020, 9(1): 1-33. doi: 10.12000/JR20008.

DENG Yunkai, YU Weidong, ZHANG Heng, et al.
Forthcoming spaceborne SAR development[J]. Journal of
Radars, 2020, 9(1): 1-33. doi: 10.12000/JR20008.

RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-
band digital beamforming synthetic aperture radar[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2011,
49(10): 3622-3628. doi: 10.1109/TGRS.2011.2157971.
SCHAEFER C, HEER C, and LUDWIG M. X-band
demonstrator for receive-only frontend with digital
beamforming[C]. 8th European Conference on Synthetic
Aperture Radar, Aachen, Germany, 2010: 1-4.

WANG Wei, WANG Robert, DENG Yunkai, et al. An
improved processing scheme of digital beam-forming in
elevation for reducing resource occupation[J]. IEEE
Geoscience and Remote Sensing Letters, 2016, 13(3):
309-313. doi: 10.1109/LGRS.2015.2508098.

QIU Jinsong, ZHANG Zhimin, WANG Robert, et al. A
novel weight generator in real-time processing architecture
of DBF-SAR[J]. IEEE Transactions on Geoscience and
Remote Sensing, 2022, 60: 5204915. doi: 10.1109/TGRS.
2021.3067882.

ZHAO Qingchao, ZHANG Yi, WANG Wei, et al. On the
frequency dispersion in DBF SAR and digital scalloped
beamforming[J]. IEEE Transactions on Geoscience and
Remote Sensing, 2020, 58(5): 3619-3632. doi: 10.1109/
TGRS.2019.2958863.

ZHOU Yashi, WANG Wei, CHEN Zhen, et al. Digital
beamforming synthetic aperture radar (DBSAR):
Experiments and performance analysis in support of 16-
channel airborne X-band SAR data[J]. IEEE Transactions
on Geoscience and Remote Sensing, 2021, 59(8): 6784-6798.
doi: 10.1109/TGRS.2020.3027691.

DOERRY A W. SAR processing with non-linear FM chirp
waveforms[R]. SAND2006-7729, 2006.

ZHANG Yongwei, WANG Wei, WANG Robert, et al. A

[52]

[53]

[54]

=
o

[56]

[57]

(58]

[59]

[60]

(61]

novel NLFM waveform with low sidelobes based on
modified Chebyshev window[J]. IEEE Geoscience and
Remote Sensing Letters, 2020, 17(5): 814-818. doi: 10.1109/
LGRS.2019.2930817.

JIN Guodong, DENG Yunkai, WANG Robert, et al. An
advanced nonlinear frequency modulation waveform for
radar imaging with low sidelobe[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2019, 57(8): 6155-6168.
doi: 10.1109/TGRS.2019.2904627.

JIN Guodong, LIU Kaiyu, DENG Yunkai, et al. Nonlinear
frequency modulation signal generator in LT-1[J]. IEEE
Geoscience and Remote Sensing Letters, 2019, 16(10):
1570-1574. doi: 10.1109/LGRS.2019.2905359.

WANG Wei, WANG Robert, ZHANG Zhimin, et al. First
demonstration of airborne SAR with nonlinear FM chirp
waveforms[J]. IEEE Geoscience and Remote Sensing
Letters, 2016, 13(2): 247-251. doi: 10.1109/LGRS.2015.
2508102.

DENG Yunkai and WANG R. Exploration of advanced
bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1):
1-9. doi: 10.3724/SP.J.1300.2014.14026.

WANG Robert, LIU Kaiyu, LIU Dacheng, et al. LuTan-1:
An innovative L-band spaceborne bistatic interferometric
synthetic aperture radar mission[J]. IEEE Geoscience and
Remote Sensing Magazine, 2025, 13(2): 58-78. doi: 10.1109/
MGRS.2024.3478761.

LIANG Da, LIU Kaiyu, ZHANG Heng, et al. The
processing framework and experimental verification for the
noninterrupted synchronization scheme of LuTan-1[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2021,
59(7): 5740-5750. doi: 10.1109/TGRS.2020.3024561.

F—B, PO, TRIKAE, . WBR ISR AR BT (BHE28) 7).
FIEE, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.
14105.

WU Yirong, HONG Wen, ZHANG Bingchen, et al. Current
developments of sparse microwave imaging[J]. Journal of
Radars, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.
14105.

LIANG Da, LIU Kaiyu, ZHANG Heng, et al. A high-
accuracy synchronization phase-compensation method based
on Kalman filter for bistatic synthetic aperture radar[J].
IEEE Geoscience and Remote Sensing Letters, 2020, 17(10):
1722-1726. doi: 10.1109/LGRS.2019.2952475.

CAI Yonghua, WANG Robert, YU Weidong, et al. An
advanced approach to improve synchronization phase
accuracy with compressive sensing for LT-1 bistatic
spaceborne SAR[J]. Remote Sensing, 2022, 14(18): 4621. doi:
10.3390/rs14184621.

WANG Jili, LI Hongxiang, ZHANG Heng, et al.


https://doi.org/10.2514/2.4986
https://doi.org/10.11947/j.AGCS.2021.20200415
https://doi.org/10.11947/j.AGCS.2021.20200415
https://doi.org/10.11947/j.AGCS.2021.20200415
https://doi.org/10.11947/j.AGCS.2021.20200415
https://doi.org/10.12000/JR20008
https://doi.org/10.12000/JR20008
https://doi.org/10.1109/TGRS.2011.2157971
https://doi.org/10.1109/LGRS.2015.2508098
https://doi.org/10.1109/TGRS.2021.3067882
https://doi.org/10.1109/TGRS.2021.3067882
https://doi.org/10.1109/TGRS.2019.2958863
https://doi.org/10.1109/TGRS.2019.2958863
https://doi.org/10.1109/TGRS.2020.3027691
https://doi.org/10.1109/LGRS.2019.2930817
https://doi.org/10.1109/LGRS.2019.2930817
https://doi.org/10.1109/TGRS.2019.2904627
https://doi.org/10.1109/LGRS.2019.2905359
https://doi.org/10.1109/LGRS.2015.2508102
https://doi.org/10.1109/LGRS.2015.2508102
https://doi.org/10.3724/SP.J.1300.2014.14026
https://doi.org/10.1109/MGRS.2024.3478761
https://doi.org/10.1109/MGRS.2024.3478761
https://doi.org/10.1109/TGRS.2020.3024561
https://doi.org/10.3724/SP.J.1300.2014.14105
https://doi.org/10.3724/SP.J.1300.2014.14105
https://doi.org/10.3724/SP.J.1300.2014.14105
https://doi.org/10.3724/SP.J.1300.2014.14105
https://doi.org/10.1109/LGRS.2019.2952475
https://doi.org/10.3390/rs14184621

22

K AR (R D)

H15%

[62]

(63]

[64]

[65]

(6]

[67]

[68]

[69]

[70]

Demonstration of single-pass spaceborne multi-baseline
InSAR result of Hongtu-1 constellation[C]. IGARSS 2024-
2024 IEEE International Geoscience and Remote Sensing
Symposium, Athens, Greece, 2024: 10881-10884. doi:
10.1109/IGARSS53475.2024.10642742.

DENG Yunkai, ZHANG Heng, LIU Kaiyu, et al. Hongtu-1:
The first spaceborne single-pass multibaseline SAR
interferometry mission[J]. IEEE Transactions on Geoscience
and Remote Sensing, 2025, 63: 5202518. doi: 10.1109/TGRS.
2024.3523299.

LIANG Da, ZHANG Heng, CAI Yonghua, et al. An
advanced phase synchronization scheme based on coherent
integration and waveform diversity for bistatic SAR[J].
Remote Sensing, 2021, 13(5): 981. doi: 10.3390/rs13050981.
CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First
demonstration of RFI mitigation in the phase
synchronization of LT-1 bistatic SAR[J]. IEEE Transactions
on Geoscience and Remote Sensing, 2023, 61: 5217319. doi:
10.1109/TGRS.2023.3310613.

CAI Yonghua, LI Junfeng, WANG Yachao, et al. Detecting
and removing phase jitters for the phase synchronization of
LT-1 bistatic SAR[J]. IEEE Geoscience and Remote Sensing
Letters, 2023, 20: 4011705. doi: 10.1109/LGRS.2023.
3318125.

CHEN Yuesheng, NAN Yijiang, CAI Yonghua, et al. Joint
narrowband RFI suppression and phase synchronization
signal retrieval for BiSAR via robust principal component
analysis[J]. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 2024, 17:
17461-17470. doi: 10.1109/JSTARS.2024.3419256.

CHEN Yuesheng, CAI Yonghua, NAN Yijiang, et al. An
advanced RFI mitigation scheme for phase synchronization
of bistatic SAR based on blind source separation[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2023, 61:
5222513. doi: 10.1109/TGRS.2023.3333372.

oK AR, RBELZ B SARK AR AP iR 2R IEB AW 7T [D].
(Mg, PEREEREREE, 2024,

CAI Yonghua. Research on time phase synchronization and
error correction technology for spaceborne bistatic
multichannel SAR[D]. [Ph.D. dissertation], University of
Chinese Academy of Sciences, 2024.

BERRADA BABY H, GOLE P, and LAVERGNAT J. A
model for the tropospheric excess path length of radio waves
from surface meteorological measurements[J]. Radio
Science, 1988, 23(6): 1023-1038. doi: 10.1029/
RS023i006p01023.

HERSBACH H, BELL B, BERRISFORD P, et al. The
ERA5 global reanalysis[J]. Quarterly Journal of the Royal
Meteorological Society, 2020, 146(730): 1999-2049. doi: 10.

[71]

[72]

(73]

[74]

[76]

[77]

(78]

[79]

1002/qj.3803.

YANG Qingyue, ZHANG Yunjun, and WANG R.
Heterogeneous InSAR tropospheric correction based on local
texture correlation[J]. IEEE Transactions on Geoscience
and Remote Sensing, 2024, 62: 5203814. doi: 10.1109/TGRS.
2024.3356749.

GOMBA G, PARIZZI A, DE ZAN F, et al. Toward
operational compensation of ionospheric effects in SAR
interferograms: The split-spectrum method[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2016,
54(3): 1446-1461. doi: 10.1109/TGRS.2015.2481079.

LIANG Cunren, AGRAM P, SIMONS M, et al. Ionospheric
correction of InNSAR time series analysis of C-band Sentinel-1
TOPS datalJ]. IEEE Transactions on Geoscience and
Remote Sensing, 2019, 57(9): 6755-6773. doi: 10.1109/
TGRS.2019.2908494.

NING Jiaqi, WANG Robert, WANG Jili, et al. Tonospheric
correction of ALOS-2 full-aperture ScanSAR interferometric
data for surface deformation measurement in Beijing[J]. The
Journal of Engineering, 2019, 2019(19): 5685-5688. doi: 10.
1049/j0e.2019.0331.

LI Shijin, ZHANG Shubi, LI Tao, et al. Modeling the
optimal baseline for a spaceborne bistatic SAR system to
generate DEMs[J]. ISPRS International Journal of Geo-
Information, 2020, 9(2): 108. doi: 10.3390/1jgi9020108.

HU Fengming, XU Feng, WANG Robert, et al. Conceptual
study and performance analysis of TanDEM multi-antenna
spaceborne SAR interferometry[J]. Journal of Remote
Sensing, 2024, 4: 0137. doi: 10.34133 /remotesensing.0137.
WU Zhipeng, WANG Teng, WANG Yingjie, et al. Deep
learning for the detection and phase unwrapping of mining-
induced deformation in large-scale interferograms[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2022, 60:
5216318. doi: 10.1109/TGRS.2021.3121907.

LA, #Rat, A A, 55 &R InS ARSI b B0 T HERE |
PRk 5 B E[J]. WLAR, 2024, 53(6): 1037-1056. doi: 10.
11947/j.AGCS.2024.20230440.

JIANG Liming, SHAO Yi, ZHOU Zhiwei, et al. A review of
intelligent InSAR data processing: Recent advancements,
Acta Geodaetica et
1037-1056. doi: 10.

challenges and prospects[J].
Cartographica Sinica, 2024, 53(6):
11947/j.AGCS.2024.20230440.

MR, xT7, 305, 55, B R 2 AR IR ML A SR DT 1) ).
M ez 244k, 2021, 50(8): 995-1005. doi: 10.11947/j.AGCS.
2021.20210235.

CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying
and mapping: Fundamental issues and research agendal[J].
Acta Geodaetica et Cartographica Sinica, 2021, 50(8):
995-1005. doi: 10.11947/j.AGCS.2021.20210235.


https://doi.org/10.1109/IGARSS53475.2024.10642742
https://doi.org/10.1109/TGRS.2024.3523299
https://doi.org/10.1109/TGRS.2024.3523299
https://doi.org/10.3390/rs13050981
https://doi.org/10.1109/TGRS.2023.3310613
https://doi.org/10.1109/LGRS.2023.3318125
https://doi.org/10.1109/LGRS.2023.3318125
https://doi.org/10.1109/JSTARS.2024.3419256
https://doi.org/10.1109/TGRS.2023.3333372
https://doi.org/10.1029/RS023i006p01023
https://doi.org/10.1029/RS023i006p01023
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1109/TGRS.2024.3356749
https://doi.org/10.1109/TGRS.2024.3356749
https://doi.org/10.1109/TGRS.2015.2481079
https://doi.org/10.1109/TGRS.2019.2908494
https://doi.org/10.1109/TGRS.2019.2908494
https://doi.org/10.1049/joe.2019.0331
https://doi.org/10.1049/joe.2019.0331
https://doi.org/10.3390/ijgi9020108
https://doi.org/10.34133/remotesensing.0137
https://doi.org/10.1109/TGRS.2021.3121907
https://doi.org/10.11947/j.AGCS.2024.20230440
https://doi.org/10.11947/j.AGCS.2024.20230440
https://doi.org/10.11947/j.AGCS.2024.20230440
https://doi.org/10.11947/j.AGCS.2024.20230440
https://doi.org/10.11947/j.AGCS.2021.20210235
https://doi.org/10.11947/j.AGCS.2021.20210235
https://doi.org/10.11947/j.AGCS.2021.20210235

14

EARHAE . EKEA R T SARM & 54K 23

[80] LOPEZ-DEKKER P, BIGGS J, CHAPRON B, et al. The
Harmony mission: End of phase-0 science overview[C]. 2021
IEEE International Geoscience and Remote Sensing
Symposium IGARSS, Brussels, Belgium, 2021: 7752-7755.
doi: 10.1109/IGARSS47720.2021.9554896.

[81] JFTHI, BV, TKAE, &5 LEBUES TSAR B RN K
BSEAR M (], Wk 2E3R, 2024, 53(10): 1863-1872. doi:
10.11947/j.AGCS.2024.20230240.

TANG Xinming, LI Tao, ZHANG Xiang, et al. In-orbit

application parameters test and analysis of L-band
£ & & N
A, LA, FERTTRATHSARE T
EF, BRRR, AR, BT R ORI
KRB TETERGEAR . sk T 78 38 I8 B G A BT 75 T
I 6

KR, WEFEG, WEAERIN, FEHTITENTHSAR
FEAEE B RHERYIEE . MUK E .

differential interferometric SAR satellite constellation[J].
Acta Geodaetica et Cartographica Sinica, 2024, 53(10):
1863-1872. doi: 10.11947/j.AGCS.2024.20230240.

[82] Rk, Ak, FEM, & EH7 RN FInSARIE AL W WS 5y

Br[J]. ML244R, 2024, 53(10): 1930-1941. doi: 10.11947/j.
AGCS.2024.20230572.
XU Bing, ZHU Yan, LI Zhiwei, et al. Analysis of InSAR
time-series deformation monitoring accuracy of domestic
satellite[J]. Acta Geodaetica et Cartographica Sinica, 2024,
53(10): 1930-1941. doi: 10.11947/j.AGCS.2024.20230572.

Zak, L, BEEETT RIS AR EIER DS
JRAGARER L R RSN 1 B

gokte, A, BYEERTTUL, EEHTUIT AN A SAR
A5 5 BB AL B

R—B WHFEH, hEREERE L, B FETT A
G HEOR . BIREEE S 5 5 BB AL B B A A
BHEAR.

(LG T77)


https://doi.org/10.1109/IGARSS47720.2021.9554896
https://doi.org/10.11947/j.AGCS.2024.20230240
https://doi.org/10.11947/j.AGCS.2024.20230240
https://doi.org/10.11947/j.AGCS.2024.20230572
https://doi.org/10.11947/j.AGCS.2024.20230572
https://doi.org/10.11947/j.AGCS.2024.20230572

	1 引言
	2 超长基线InSAR模型
	2.1 基于临界有效空间基线解析方程的EBF分类模型
	2.2 临界相干时间基线模型

	3 超长基线InSAR概念与内涵
	4 超长基线InSAR性能分析
	5 超长基线InSAR系统挑战
	5.1 轨道设计与控制
	5.2 提高系统灵敏度
	5.3 高精度相位同步
	5.4 大气传输误差校正
	5.5 相位解缠

	6 超长基线InSAR应用潜力
	6.1 高精度高程测量
	6.2 高精度形变测量
	6.3 分布式SAR系统

	7 结语
	附录 临界有效基线解析方程推导
	参考文献

