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Abstract Interferometric Synthetic Aperture Radar (InSAR) provides constraints on lithospheric
kinematics at high spatial resolution. Interpreting InSAR‐derived deformation maps at continental scales is
challenged by long‐wavelength correlated noise and the inherent limitation of measuring relative displacements
within the data footprint. We address these issues by applying corrections to InSAR time series to estimate
ground velocity fields with millimeter‐per‐year precision over hundreds of kilometers. We use these velocity
fields to determine the angular velocity of the local tectonic plate, assuming negligible long‐wavelength vertical
and intra‐plate deformation. The uncertainty of the angular velocity is primarily influenced by observational
errors and the limited imaging geometries available. Using the Arabian plate as an example, this work
demonstrates the potential to improve plate motion models and evaluate intra‐plate deformation in regions with
sparse ground‐based instrumentation.

Plain Language Summary Quantifying how tectonic plates move is key to understanding how
Earth's surface deforms over time. Plate motions have traditionally been estimated using global navigation
satellite system (GNSS) observations. However, GNSS stations are often unevenly distributed, especially away
from active plate boundaries, making it harder to precisely determine broad‐scale plate motions. Interferometric
Synthetic Aperture Radar (InSAR), a satellite‐based radar technique, offers widespread spatial coverage but
measures only relative displacements along the satellite's line‐of‐sight, and it is often contaminated by long‐
wavelength noise. Here, we explore using InSAR to constrain the rotation field of the rigid Arabian plate. We
developed a method to correct for long‐wavelength contributions of non‐tectonic sources and extract absolute
plate rotation from spatial gradients in InSAR‐measured relative velocities. By assuming negligible large‐scale
vertical motion and horizontal intra‐plate deformation, InSAR velocity alone can determine a plate's Euler pole
in the International Terrestrial Reference Frame (ITRF14). This approach demonstrates the broader potential for
combining satellite and ground data to better understand tectonic plate kinematics and eventually dynamics of
lithospheric processes.

1. Introduction
Geodetic observations of the partitioning of deformation across plate boundaries are crucial for understanding
lithospheric dynamics. Key issues include the consistency of geodetic and geologic deformation rates, the
appropriateness of the rigid plate approximation, and the rate of seismogenic strain accumulation (e.g., Argus &
Gordon, 1996; Loveless & Meade, 2010; McCaffrey, 2005; Tong et al., 2014). Global models of rigid plate
motion provide the context for assessing deformation partitioning (e.g., Argus et al., 2011; DeMets et al., 2010;
Kreemer et al., 2014). Traditionally, these plate motion models are predicted from plate angular velocity vectors
derived using global navigation satellite system (GNSS) observations and are limited by instrumental coverage,
especially in plate interiors. However, large‐scale (102–103 km) surface motion can now be mapped with great
precision using Interferometric Synthetic Aperture Radar (InSAR) (e.g., Lemrabet et al., 2023; Ou et al., 2022;
Stephenson et al., 2022; Weiss et al., 2020; Xu et al., 2021), thereby providing useful constraints in sparsely
instrumented regions.

Despite the near‐complete spatial continuity of InSAR‐derived velocity fields, their long‐wavelength information
is often underutilized (Chaussard et al., 2016; Parizzi et al., 2021). For example, when studying seismic processes
along active fault zones, an empirical low‐order polynomial velocity field is typically removed to alleviate long‐
wavelength orbital or atmospheric effects (e.g., Biggs et al., 2007; Cavalié et al., 2008; Massonnet et al., 1993;
Pritchard & Simons, 2006; Simons et al., 2002; Ryder et al., 2007). For investigating long‐wavelength
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(102–103 km) distributed strain, InSAR velocity fields are often aligned to deformation models interpolated from
GNSS networks (e.g., Fialko, 2006; Jolivet et al., 2015; Lemrabet et al., 2023; Neely et al., 2020; Tong
et al., 2013), which simultaneously mosaics individually referenced velocity fields to an internally consistent
reference frame.When such a network is unavailable, unassisted use of InSAR‐derived velocities over continental
scales requires accounting for spatially correlated signals of confounding origins (Fattahi & Amelung, 2014;
Chaussard, Bürgmann, Fattahi, Johnson, et al., 2015, Chaussard, Bürgmann, Fattahi, Nadeau, et al., 2015),
including spatiotemporal variations of troposphere (Emardson et al., 2003; Onn & Zebker, 2006; Tarayre &
Massonnet, 1996), ionosphere (Gomba et al., 2016; Gray et al., 2000; Meyer, 2010) and the lithospheric responses
to tides and surface mass loading (Biggs et al., 2007; DiCaprio & Simons, 2008; Xu & Sandwell, 2020).

Recent large‐area studies demonstrate the potential to constrain lateral plate motions using InSAR observations.
Lazecký et al. (2023) applied burst‐overlap interferometry (Grandin et al., 2016; Li et al., 2021) over regions
including the Alpine‐Himalayan Belt, yielding averaged horizontal velocities that agree with the ITRF2014 plate
motion model, with median 2‐sigma errors of 4 mm/yr northwards and 23 mm/yr eastwards. When inferring
interseismic fault coupling of the East Anatolian and North Anatolian Faults, Bletery et al. (2020) combined
InSAR and GNSS observations to estimate local Euler vectors of Arabia and Anatolia relative to stable Eurasia.
Using exclusively InSAR‐derived relative LOS velocities, Stephenson et al. (2022) showed that plate motions
manifest themselves as velocity gradients (see also Bähr, 2013; Bähr et al., 2012), consistent with the ITRF2014
plate motion model (Altamimi et al., 2017) within 0.2 mm/yr/100 km in Makran, Arabia, and Australia. Later,
Lemrabet et al. (2023) showed that large‐scale velocity ramps can be used to retrieve the plate motion in the ITRF
reference frame and quantify their consistency against GNSS derived plate motion. Here, we address the inverse
problem and use long‐wavelength InSAR velocity fields frommultiple orbital tracks to determine the Euler vector
for the Arabian plate.

2. Methods
2.1. Interferograms Processing and Velocity Corrections

We process nine tracks of Sentinel‐1A Interferometric Wide Swath mode Level‐1 SLCs (single‐look complex
images, each covering 250 × 250 km; Figure 1) spanning 2014–2023 (∼250 epochs). SLCs from the same track
are coregistered using precise orbits and the 1‐arcsecond SRTM v3.0 elevation model (Farr et al., 2007), all
relative to the WGS84 ellipsoid. For finer azimuthal coregistration, We apply a network‐based enhanced spectral
diversity approach (Fattahi et al., 2017). We construct a fully connected, small‐baseline interferometric network
(Berardino et al., 2002) by pairing each acquisition with all the neighbors within 2 months and with the acqui-
sitions that were acquired 4 months apart. Approximately 900 interferograms per track are multilooked to ∼500‐
m ground‐pixel resolution, filtered using a power‐spectrum adaptive filter with an exponent of 0.5 (Goldstein &
Werner, 1998), and unwrapped using a minimum cost‐flow algorithm (Chen & Zebker, 2002).

We estimate deformation time series using a least‐squares inversion weighted by the inverse of phase variance
(Guarnieri & Tebaldini, 2008; Tough et al., 1995) while minimizing the implied velocities in all time intervals
(Berardino et al., 2002; Yunjun et al., 2019). In the time‐series domain, we apply corrections to account for
stratified tropospheric delays (Jolivet et al., 2011, 2014) based on the ECMWF ReAnalysis model (ERA5)
(Hersbach et al., 2020), ionospheric effects using a range split‐spectrum method (Liang et al., 2019), solid earth
tides (SET) (Milbert, 2018; Yunjun et al., 2022), the elastic response to ocean tidal loading (OTL) (Martens
et al., 2019), phase closure bias (Zheng et al., 2022), and residual baseline‐related topographic phases (Fattahi &
Amelung, 2013). We fit pixel‐wise time series to a temporal function consisting of secular velocity plus annual
and semi‐annual sinusoids (Text S2 in Supporting Information S1; Hetland et al., 2012). Low‐quality pixels with
temporal coherence <0.9 are masked (Yunjun et al., 2019), as are pixels where the cumulative closure phase
exceeds three times the standard deviation (Zheng et al., 2022). We exclude clearly deforming regions near
(within 60 km) the Dead Sea Transform Fault to reduce the effects of seismic cycle and rifting processes (Castro‐
Perdomo et al., 2021; Klinger et al., 1999; Li et al., 2021; Reilinger et al., 2006). For simplicity, we do not model
the relative motion of the Sinai subplate to Arabia (Mahmoud et al., 2005). The final velocity field is geocoded
and downsampled to a 2.5 km posting.
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2.2. InSAR‐Based Euler Vector Estimation

Leveraging spatially relative InSAR measurements to constrain the absolute rotation of tectonic plates in a global
reference frame forms a central tenet of this work. This apparent contradiction is resolved by exploiting the
intrinsic geometric properties of radar imaging. The systematic variation in the satellite's look angle across the
imaging swath induces a predictable quasi‐range‐dependent LOS velocity gradient that, under the assumption of
rigid plate motion and negligible long‐wavelength vertical motion, becomes proportional to the absolute angular
velocity vector (Bähr et al., 2012; Lemrabet et al., 2023; Stephenson et al., 2022).

InSAR LOS measurements and the derived velocities are with respect to the orbital positions of Sentinel‐1 in no‐
net‐rotation (NNR) ITRF2014 (Peter, 2021). Assuming the large‐scale vertical motion can be ignored, we write
the ground velocity in ITRF projected along the satellite LOS as a sum of the following components:

d = dB + dε, (1)

Figure 1. Arabian plate velocities predicted by global navigation satellite system (GNSS)‐derived (Viltres et al., 2022, shown
as white arrows. The orange arrows are stations used for our geometry tests in Section 3.3. Text S1 in Supporting
Information S1) and our Interferometric Synthetic Aperture Radar (InSAR)‐derived (dark arrows) Euler vector in
International Terrestrial Reference Frame 2014. The orange triangles indicate the GNSS stations used to derive the Arabian
Euler vector by Altamimi et al. (2017). Brown shading marks dune regions that decorrelate interferograms. The red
(ascending) and blue (descending) rectangles indicate the extent of the InSAR measurements used in this study. Plate
boundaries are compiled from Argus et al. (2011), Bird (2003), and Viltres et al. (2022).
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where dB is the linear velocity due to plate rotation, and dε is the velocity due to internal deformation relative to
dB, including elastic strain of plate boundaries and distributed intra‐plate strain (e.g., Meade & Loveless, 2009).
When dε negligible, the ground velocity can be modeled as an Euler vector (i.e., angular velocity vector),
m = [mx,my,mz]

⊺
(rad/yr) (Cox & Hart, 1986; McKenzie & Parker, 1967; Morgan, 1968). The Euler vector

maps to the pixel‐wise LOS velocity d for P number of pixels via a linear transformation matrix,G, which is fully
determined by the coordinates and LOS angles of each InSAR pixel (Text S3 in Supporting Information S1) such
that

d = G m (2)

where d,G, andm have dimensions [P × 1], [P × 3], and [3 × 1], respectively. The InSAR displacement and
velocity is usually described relative to a reference pixel (e.g., Massonnet & Feigl, 1998), r∗, where the derived
displacement and velocity are assumed to be zero. To align the linear model with our relative measurements, we
reference G to the common reference pixel in each track by subtracting the row corresponding to the reference
pixel, G∗ = G − Gr∗ . We then can formulate a linear problem with the measured relative velocity, d∗

d∗ = G∗ m (3)

Consequently, the local velocity gradient tensor observed in each relative InSAR track d∗, encodes information
about the absolute Euler vectorm in ITRF2014, and the mapping relation is defined by the sensing matrixG. The
maximum likelihood solution is given by

m̂ = Cm̂G∗⊺
Cd− 1d

∗ (4)

with covariance

Cm̂ = (G∗⊺Cd− 1G
∗)
− 1

(5)

where the estimate of the Euler vector, m̂, and its model covariance,Cm̂, depends on the observational covariance
Cd which is dictated by measurement uncertainty.

2.3. Covariance Model at a Single Reference

Residual noise remains in interferometric phase measurements even after applying deterministic corrections,
introducing uncertainties in ground velocity estimates. We assume there is no bias in the long‐wavelength ve-
locity gradient, and following previous studies (e.g., Agram & Simons, 2015), we model the short‐to
intermediate‐wavelength (<100 km) phase noise as stochastic variables in the velocity fields

d∗ = G∗ m + dresid, (6)

where the stochastic component

dresid = dcorr + duncorr + dref . (7)

The first two terms represent the deviations of pixel‐wise velocities from pure ground displacements in imperfect
measurements. dcorr represents apparent velocity contribution due to spatially correlated residual noise (un-
certainties in the atmospheric structures), and duncorr represents the velocity noise due to the phase contribution
from spatio‐temporally uncorrelated noise sources (e.g., decorrelation noise, uncorrelated troposphere in time,
phase unwrapping errors). It is reasonable to assume these sources of noise to be zero mean random variables and
describe the observational covariance matrix as

Cd = Cds + Cdt, (8)
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where Cds accounts for the stationary and isotropic intermediate‐wavelength spatial correlation of dcorr (Hans-
sen, 2001). We remove a quadratic ramp from velocity before computing Cds using a distance‐dependent
exponential function fitted to the sampled variogram for data point pairs within 300 km (Jónsson et al., 2002;
Lohman & Simons, 2005; Simons et al., 2002). The characteristic length scales of the modeled covariance are
50–100 km. Cdt accounts for duncorr and is a diagonal matrix populated with the variances of the pixel‐wise
velocity estimates determined by the functional‐fit residuals assuming uniform Gaussian errors at all epochs
(Fattahi & Amelung, 2015). The median of diagonals in Cdt and Cds are of comparable magnitude, ranging from
0.4 to 0.8 mm/yr (Text S4.2 in Supporting Information S1).

2.4. Posterior From Ensemble References

Our velocities, observational errors, and the linear operatorG∗ are all described relative to a set of reference pixels
(Equation 6). While guidelines exist for selecting such candidate pixels (Yunjun et al., 2019; Zhang et al., 2024),
any real or apparent displacement (e.g., from atmospheric path delays) of the reference pixel, dref , will be
redistributed to all the other pixels. To account for this limitation, we consider multiple realizations of the velocity
field using different reference points. Specifically, we conduct 1,000 realizations of the Euler vector inversion
(Equations 4 and 5), where each is based on velocity fields using randomly picked reference points for each track
(Figure S4 in Supporting Information S1). We restrict the choice of reference such that it lies below an elevation
of 1500 m and must be at least 25 km frommasked areas). The measurement error,Cdt, in each realization updates
with the chosen reference, while Cds remains unchanged due to the stationarity assumption of the deramped noise
structure. These realizations yield an ensemble of Euler vectors (Section 3.2), fromwhich we introduce and derive
a mismodeling covariance matrix, Cp, to quantify the ensemble posterior. We estimate Cp using the second
moment of the ensemble predictions over all realizations (Duputel et al., 2012; Vasyura‐Bathke et al., 2021):

(Cp)
ij =

1
L
∑
L

k=1
(di (m̂k) − d̄i

) (d j (m̂k) − d̄ j
) (9)

where i, j denote the rows and columns in the data covariance matrix; the total number of realizations, L = 1000;
di (m̂k) represents the predicted data at pixel i with the kth realized Euler vector, corresponding to a reference
point at rk. The term d̄i

= 1
L∑

L
k=1d

i
k (m̂k) is the population mean of predictions at pixel i. We append this

epistemic covariance to the total noise covariance matrix as Cχ = Cd + Cp and invert for the posterior and
uncertainty of the Euler vector using Equations 4 and 5, with Cχ replacing Cd.

3. Results and Discussions
3.1. The Long‐Wavelength Velocity Field

We demonstrate the process of inferring the long‐wavelength velocity field using ascending (dusk) track A087 in
northwest Arabia (Figure 2). The time series of ionospheric delay in dusk tracks contributes to secular apparent
velocity with a gradient of ∼0.8 mm/yr/100 km. Due to solar cycles, the apparent velocity depends on the time
span, and the gradient increases to ∼2.0 when fitted to data before January 2022. The ionospheric correction
reduces ramp magnitudes and spatial standard deviation for all epochs (Figures 2i–2k).

The tropospheric model reduces temporal fluctuations, lowering median post‐fit residuals by 10.1 mm for
northwest Arabia, 6.1 mm for Oman, and 5.1 mm for Yemen tracks. The apparent velocity gradient predicted
from ERA5 is minimal, at 0.1 mm/yr/100 km, similar to a kriging‐interpolated method (Cao et al., 2021) and the
GACOS (Yu et al., 2017) model. The largest tidal constituents, M2 and O1, have aliased periods of 64.1 and
77.7 days, respectively, when sampled every 12 days (Xu & Sandwell, 2020), so SET and OTL have minimal
impact on decadal timescales. Phase closure biases and topographic residuals are localized and do not produce a
velocity gradient greater than 0.1 mm/yr/100 km. After all corrections, we account for 70% of the ramps at the
epoch level (Text S2.2 and Figure S1 in Supporting Information S1), leaving the final time series with standard
deviations of 1.6–3 cm. The standard deviations of velocity estimates relative to the reference points are
0.4–0.8 mm/yr (Figures 2i and 3b) in the far field.
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Figure 2.
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Quasi‐range‐dependent velocity gradients of ∼2.1 mm/yr/100 km are present in multiple velocity tracks (Fig-
ures S2 and S10 in Supporting Information S1). A joint inversion of nine InSAR tracks arrives at an ITRF2014
Euler vector m̂ = [0.358, − 0.055,0.418] °/Ma. This predicts the same ∼2.1 mm/yr/100 km velocity gradient
and horizontal velocities of 38–54 mm/yr across the Arabian plate (Figure 3c). Subtracting the prediction from
the angular velocity of the plate, the residual velocity fields of ±2 mm/yr represent motion relative to the Arabian
reference frame, which agree with horizontal GNSS data (Viltres et al., 2022) (Figures S11–S13 in Supporting
Information S1). The largest discrepancies occur near the Dead Sea (4–5 mm/yr of lithospheric rebound), the
Wadi Sirhan Basin near GNSS site JW03 (Figure 3d), and potential ionospheric correction artifacts near site
TB06.

3.2. The Inferred Euler Vector

Several Euler vectors exist for the Arabian plate, including MORVEL56‐NNR (Argus et al., 2011), GSRM v2.1
(Kreemer et al., 2014), the ITRF2014 plate model (Altamimi et al., 2017), and a recent GNSS‐derived vector
(Viltres et al., 2022). The rigid block approximation is appropriate in Arabia, and the Arabian vector of Altamimi
et al. (2017) aligns well with Le Pichon and Kreemer (2010) and Viltres et al. (2022). Therefore, we use Altamimi
et al. (2017) as the benchmark for comparisons (Figure 4).

The vector derived from the single realization of the velocities shown in Figure 3a lies between the MORVEL and
Altamimi et al. (2017) (“x” marker in Figures 4a–4c). For 1,000 random reference points, the Euler vector re-
alizations are distributed within 13.7° in latitude, 27.9° in longitude, and 0.1 °/Ma in rotation rate. Significant
trade‐offs occur along N60°E in geographic and latitudinal‐rate spaces. The posterior Euler vector
m̂ = [0.353, − 0.049,0.421] °/Ma is 182.7 km from the pole of Altamimi et al. (2017), with a 0.037°/Ma faster
rotation rate. Our 2‐sigma error bound overlaps with Altamimi et al. (2017). The mean differences in horizontal
velocities are 1.015 mm/yr (east) and 3.269 mm/yr (north), indicating less constraint on north‐south motion. Euler
vector parameters and covariances are tabulated in Table S1 in Supporting Information S1. Our inversion does not
account for uncertainty in the long‐wavelength velocity gradient. Following the approach in Lemrabet
et al. (2023) we empirically estimate the uncertainty of the long‐wavelength velocity to be approximately
0.001− 0.004 mm/yr/km and can accumulate to 1− 3 mm/yr across the track (Text S2.3 in Supporting
Information S1).

3.3. Impact of InSAR Imaging Geometry

The uncertainty in the Euler vector depends on how well the measurement aperture spans the local rotational
component of the velocity gradient tensor. The trade‐off between the distance between the sites and the pole and
the angular velocity creates an elongation of the error ellipse of the Euler pole along this radial direction (e.g.,
d’Alessio et al., 2005; Elliott et al., 2010). For example, 15 GNSS sites selected from Viltres et al. (2022) (Text S1
in Supporting Information S1) in northwest Arabia yield a Euler pole with high uncertainty normal to the plate
motion (GNSS (NW) in Figure 4). Joint inversion with collocated InSAR velocities over northwest Arabia re-
duces the trade‐off by a factor of two (GNSS (NW)+5InSAR in Figure 4). However, further including the InSAR
data in Yemen and Oman only improves the estimate marginally, presumably due to the poor data quality in those
regions (Text S2 in Supporting Information S1).

We further evaluate the effects of imaging geometry through synthetic scenarios with varying data availability:
GNSS‐only, InSAR LOS, or InSAR LOS combined with along‐track velocity constraints (e.g., pixel tracking
(Fialko et al., 2001) or burst‐overlap interferometry (Grandin et al., 2016)). We use the Euler vector from
Altamimi et al. (2017) to predict horizontal and LOS velocities as the synthetic inputs for SAR and GNSS

Figure 2. Time‐series corrections applied to track A087 in northwest Arabia. Velocities are relative to the reference point (black square) near the global navigation
satellite system site HALY. Positive velocities move toward the satellite. The L2‐norm of the best‐fit linear ramp coefficients to the velocity field (Text S2.2 in
Supporting Information S1) is shown in the upper right of each panel. (a–e) Apparent LOS velocities of each correction term (note varying color scale ranges). (a) The
ionospheric delay estimated from December 2014 to February 2023. (b) Same as (a), but only considering data until January 2022. (f–h) The original velocity in ITRF,
after corrections in ITRF2014, and after corrections in the Arabia‐fixed frame. The total electron content unit shows annual and 11‐year fluctuations of the ionosphere
(Noll, 2010). (i) Time series averaged over the black rectangle at the southeast of panels (a and b) The dashed lines indicate the best‐fit apparent velocity depending on
the time period being considered. σx denotes the temporal standard deviation. ( j) L2‐norms of the linear ramp coefficients in all epochs. (k) Standard deviations of the
displacement fields in all epochs. x̃ indicates the temporal average for each quantity.
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inversions, respectively. For tests including SAR synthetics, we assume measurement errors Cdt as referenced in
Figure 3a and neglectCp. For the GNSS‐only synthetics, we adopt the measurement errors of Viltres et al. (2022).
In each case, we compute (a) the Euler vector, m̂ and its covariance matrix, Cm̂, (b) the system's condition
number, (c) the angular velocity difference from the input, ‖m̂ − mAltamimi et al., 2017‖ (°/Ma), and (d) the post‐fit
residual RMS (Figure 5).

The best solution is achieved using the full GNSS network (gnss). Using 20 stations spanning the breadth of the
plate (gnssEW) reaches a similar result. However, when using only 15 stations from northwest Arabia (gnssNW),
the yielded Euler vector has high trade‐off. For InSAR scenarios, using exclusively ascending or descending
geometries results in significant bias in the pole location and large Cm̂. For example, the 1A (one Ascending
track), 1D (one Descending), and 2A (two Ascending) cases (|ΔD|> 708.9 km) are ill‐conditioned and prone to
over‐fitting (low post‐fit RMS), exhibiting spurious north‐south motion (Figure 5 and the labels defined therein).

Figure 3. Three overlapping ascending tracks of velocity in northwest Arabia showing the consistent impact of Arabian
motion in ITRF2014. (a) Observed line‐of‐sight (LOS) velocities referenced to the black squares in each of the respective
tracks. We masked out areas (i) near and west of the Dead Sea Transform Fault, (ii) a large decorrelated area, and (iii) areas
with >100 km wide uplift in Wadi Sirhan Basin. (b) The 1‐σ uncertainties of velocities, that is, the diagonals of C0.5

dt .
(c) Inferred Arabian rotation. (d) Arabian‐fixed LOS velocities after removing the inferred rotation from (a). Circles: global
navigation satellite system horizontal velocities projected into the radar LOS, with the same color coding as Interferometric
Synthetic Aperture Radar (InSAR) velocity. Inset globe: the inferred Euler pole from all nine InSAR tracks and the modeled
horizontal motions at the five stations used in defining the Arabian Euler vector in ITRF2014 (Altamimi et al., 2017).
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Two or more LOS geometries are needed to constrain an Euler vector with a reasonable 2‐sigma bound that
overlaps the benchmark.

Due to the near‐polar orbit and consistent right‐looking geometry of conventional satellites like Sentinel‐1, the
sensitivity to the north‐south displacement field is limited (e.g., Brouwer & Hanssen, 2023). The null space
associated with the limited diversity of imaging geometry absorbs non‐rotational long‐wavelength signals in the
LOS measurements by inflating the apparent north‐south motion. Residual noise of at mm/yr level both at the
reference pixel and in long wavelengths can elongate the error ellipse of the derived Euler vector along N60°E
(Figure 4a). As a result, while synthetic scenarios 3A (three Ascending), 4AD (two Ascending and two
Descending), etc., constrain the Euler vector within the 2‐sigma bounds of the solution from Altamimi

Figure 4. (a–c) Arabian plate Euler vectors (defined in ITRF2014) and uncertainties. The “x” marker shows the vector
derived from velocities in Figure 3a. Scattered gray points represent the ensemble of Euler vectors estimated using different
reference pixels, with marginal distributions plotted as histograms. The orange ellipse marks the final posterior vector. GNSS
(NW) is based on 15 global navigation satellite system (GNSS) stations in northwest Arabia (Viltres et al., 2022), GNSS
(NW)+5InSAR is the joint inversion with five Interferometric Synthetic Aperture Radar (InSAR) tracks in NWArabia, and
GNSS(NW)+9InSAR is a joint inversion including all InSAR data sets. |ΔD| and Δω are the distance and rotation rate
differences between our InSAR‐derived vector and Altamimi et al. (2017). (d) Predicted horizontal velocities (in stable Nubia)
of the InSAR‐only posterior vector evaluated at GNSS sites. The mean differences in east ( δ̄ve ) and north ( δ̄vn ) components are
compared with Altamimi et al. (2017).
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et al. (2017), our observations do not. Incorporating azimuthal displacements or future left‐looking measurements
could improve the solution (e.g., Rosen & Kumar, 2021; Wright et al., 2004).

3.4. Referencing Multi‐Track InSAR Velocities

Multi‐track InSAR velocities are typically stitched to form a regional‐scale deformation field by empirically
aligning each track or frame to collocated GNSS (e.g., Lemrabet et al., 2023; Ou et al., 2022; Weiss et al., 2020;
Xu et al., 2021). However, this data‐driven approach ties InSAR long‐wavelength components to GNSS, and
requires a well‐distributed GNSS network. By inferring and removing the Arabian block rotation, we isolate intra‐
plate deformation from the observed velocities, thus providing a potentially more independent approach for
referencing multi‐track InSAR velocities.

Our Arabia‐fixed velocities are consistent across multiple tracks and with GNSS LOS velocities (Viltres
et al., 2022) without empirical adjustments (Figure 3d and Figure S12 in Supporting Information S1). The

Figure 5. Synthetic scenarios with various sensing geometries. (a) Same style as Figure 4a. |ΔD| denotes the distance of 2A
from Altamimi et al. (2017). (b) Same style as Figure 4d. (c) Model sensitivity: the condition number of G and the
determinant of Cm̂. (d) Angular velocity difference from Altamimi et al. (2017) in Cartesian space. Dots are colored by residual
RMS. Labeling for global navigation satellite system (GNSS)‐only synthetics: gnssNW denotes 15 stations in NW Arabia;
gnssEW denotes 20 sparse GNSS sites in panel (b). gnss denotes the full GNSS network in Arabia (Figure 1). Labeling for
Interferometric Synthetic Aperture Radar (InSAR) synthetics: the numeric denotes the total number of track(s), “A” denotes
ascending data, and “D” for descending data. 1A: one ascending track, A087. 1D: one descending track, D021. 2A: two
ascending tracks, A087 and A014. 2ADfar: one ascending in NW Arabia and one descending in Oman, A057 and D021. 2D:
D021 and D123. 2AD: A087 and A014. 3A: A087, A014, and A116. 4AD: 3A and D021. 5AD: five tracks in northwest Arabia.
7AD: seven tracks in northwest Arabia and Oman 9AD: all InSAR tracks. The subscript “az” indicates inclusion of the synthetic
azimuthal velocity.
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consistency suggests that (a) the overlapping tracks do not experience significant relative intra‐plate deformation
nor vertical motion; (b) the relative horizontal and vertical motion between the reference pixels are negligible; (c)
the effect of residual tropospheric noise on velocities sampled at different days by radar satellites are negligible.
Thus, we infer that the velocity field primarily characterize the underlying rigid Arabian plate (ArRajehi
et al., 2010; Vigny et al., 2006; Viltres et al., 2022), and the post‐fit residuals are localized deformation confined
within areas such as Dead Sea and the Wadi Sirhan Basin. In regions where large‐scale vertical or distributed
deformation (dε) across multiple tracks cannot be overlooked (e.g., Great Lakes and Western US), a rigid plate
assumption is inappropriate and the inversion will be biased. In such cases, one must account for the impact of
mean rotation in ITRF on apparent strain or reconcile with existing GNSS networks empirically.

4. Conclusions
We infer the angular velocity vector of the Arabian plate using large‐scale InSAR velocity fields in ITRF14. Plate
rotation, manifested as a relative velocity gradient of ∼2.1 mm/yr/100 km due to varying line‐of‐sight sensi-
tivity, is extracted after mitigating long‐wavelength path delays. Ionospheric effects emerge as the dominant
nuisance origin, contributing to 0.8–2.0 mm/yr/100 km of apparent gradient in C‐band velocity fields, an order of
magnitude larger than tropospheric and tidal signals. The InSAR‐derived Euler vector agrees with GNSS‐based
results and exhibits mean differences of 1.0 (east) and 3.3 (north) mm/yr. A persistent bias in the InSAR‐based
solution arises from poor north‐south sensitivity coupled with unaccounted‐for long‐wavelength noise. This work
demonstrates the methodology to assess reference frame effects in InSAR velocity fields and to integrate them
with conventional ground networks for high‐resolution plate kinematic models. However, caution is warranted
when extending this approach to regions with significant large‐scale vertical motion and intra‐plate distributed
deformation.

Data Availability Statement
Copernicus Sentinel‐1 SLCs are provided by the European Space Agency, accessed from ASF DAAC (2020/
2023) via Seamless SAR Archive (SSARA, 2023). Interferograms are processed with stackSentinel
(Fattahi et al., 2017) in the InSAR Scientific Computing Environment (Rosen et al., 2012). Time‐series analysis is
performed using MintPy (Yunjun et al., 2019). The ocean tidal loading correction is based on global ocean tidal
model TPXO09 Atlas (Egbert & Erofeeva, 2002). Our plate motion modeling codes are available on Liu (2025).
The time‐series and velocity data are available on Liu et al. (2025). Figures were made with Matplotlib (Hunt-
er, 2007), Cartopy (Met Office, 2010/2015), and Geopandas (Jordahl et al., 2020).
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