Supporting Information for "Inferring tectonic plate rotations from InSAR time series"

Yuan-Kai Liu¹, Zhang Yunjun^{1,2,3}, Mark Simons¹

¹Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology

²Now at National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences

³Now at School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences

Contents of this file

- 1. Supplementary Text S1 to S5
- 2. Supplementary Table S1
- 3. Supplementary Figure S1 to S14

¹ Supplementary Text

² Text S1. GNSS network used in this paper

In the Main Text, we utilize the GNSS dataset from Viltres et al. (2022). This work compiles the most recent and complete GNSS-derived velocities from 168 stations across the Arabian plate for the regional kinematic block model. The GNSS velocities closely fit the Arabian plate motion, with the exception of five stations located near and within the Danakil block (Afar depression in the SW of the map). A single Euler pole at 50.93 ± 0.15 N, 353.91 ± 0.25 E, with a rotation rate of 0.524 ± 0.001 /Ma, effectively explains nearly all the GNSS station velocities relative to the ITRF14 reference frame (Figure S13), confirming the large-scale rigidity of the plate (Le Pichon & Kreemer, 2010; Viltres et al., 2022).

In our joint inversion presented in the Main Text (Figure 4), the aim is to demonstrate InSAR's contribution to enhancing GNSS ability to infer the Euler vector when they are limited specifically in the northwest Arabia. Therefore, we only include the 15 GNSS sites located within the InSAR footprint in the NW Arabia (including station HALY, which was used to determine the ITRF2014 Arabian Plate Motion Model).

For the GNSS synthetic tests in Main Text Section 3.3, we further include stations from the eastern side of the Arabian Peninsula to cover a broader range of the rotational field, thereby reducing the uncertainty in the inferred Euler vector. These stations include SQUO in Muscat (Oman), and the four stations used to determine the ITRF2014 Arabian Plate Motion Model (Altamimi et al., 2017): NAMA, JIZN, SOLA, and BAHR. For a rigid plate like Arabia, a sparse but widely distributed GNSS network can adequately constrain

the angular velocity vector by properly sampling the rotation field. Consequently, InSAR
may not be essential with high-fidelity GNSS stations spanning the plate's width.

²⁴ Text S2. InSAR velocity

²⁵ Text S2-1. Velocity and uncertainty estimation

After applying corrections for solid-earth tides (SET), ERA5 weather model, oceantidal loading effects (OTL), ionospheric phases, and DEM error estimates, we model the time series at each pixel using the following equation:

$$^{29} \qquad d(t_k) = a_0 + \dot{a}t_k + a_{c_1}\cos(2\pi t_k) + a_{s_1}\sin(2\pi t_k) + a_{c_2}\cos(4\pi t_k) + a_{s_2}\sin(4\pi t_k) + \epsilon(t_k)$$
(1)

We solve for the parameters (intercept a_0 , linear rate \dot{a} , and annual/semi-annual periodic terms a_{c_1} , a_{c_2} , a_{s_1} , a_{s_2}) using a least-squares approach. The linear rate \dot{a} is extracted as the velocity estimate (Figure S2). We compute the standard deviation of the residuals, $\sigma_{\epsilon(t_k)}$, and propagate it to estimate the velocity uncertainty (Figure S2 and S10), assuming uncorrelated Gaussian errors at all epochs (Fattahi & Amelung, 2015), with:

$$\dot{\sigma}_{\rm v} = \frac{\sigma_{\epsilon(t_k)}}{\sqrt{N - 6\sigma_t}} \tag{2}$$

where N is the number of epochs (K), N – 6 represents the degrees of freedom in Figure 5, and σ_t is the standard deviation of all time epochs in years.

Velocity maps derived from Sentinel-1 TOPS (Terrain Observation with Progressive Scans) interferograms (Figure S10) exhibit noise, particularly at burst boundaries, manifesting as intra-burst phase ramps and inter-burst discontinuities. These are primarily

:

attributed to ionospheric effects causing azimuthal misregistration, which our split-band 41 ionospheric correction did not fully account for (Gomba et al., 2017; Liang et al., 2019). 42 Our processing only corrects for the range phase group delay caused by spatially smooth 43 Total Electron Content (TEC). While intra-burst phase ramps could be removed by esti-44 mating azimuthal misregistration and related ramps due to TEC spatial gradients (Liang 45 et al., 2019), this method relies on detailed quality checks of the estimated TEC gradient, 46 which we consider more susceptible to unwrapping errors in sub-band ionospheric phases. 47 Given our focus on the long-wavelength gradient of the velocity field, we did not address 48 these higher-frequency effects. 49

The uncertainty of the velocity field (quantified by the standard deviation of the velocity 50 fit) varies spatially, with higher uncertainty in the tracks over Oman and Yemen (the row 51 of Std. in Figure S10). These four tracks also show lower average coherence across 52 all interferograms. Several factors likely contribute to this reduced coherence in Yemen 53 and Oman (typically $\gamma \sim 0.7 - 0.8$) compared to NW Arabia ($\gamma > 0.9$): (1) Steeper 54 terrains, such as the southern Sarawat Mountains (e.g., near Jabal An-Nabī Shu'ayb), 55 with significant elevation changes (< 1 km to 4 km within 100 km), cause geometric 56 decorrelation and phase noise. (2) Tropospheric conditions: Yemen and Oman, located 57 in more tropical latitudes, experience greater water vapor variability (e.g., wet delays 58 of 5–20 cm), contrasting with the more stable, arid climate of NW Arabia. (3) Surface 59 decorrelation: Extensive sand dune fields in Yemen and Oman (e.g., Rub' al Khali) lead 60 to temporal decorrelation due to surface changes, unlike the stable rocky surfaces in NW 61 Arabia. 62

(3)

⁶³ Text S2-2. Performance of time-series corrections in reducing ramps

To quantify the effectiveness of time-series corrections (solid-earth tides (SET), ERA5 weather model, ocean-tidal loading effects (OTL), ionospheric phases, and DEM error estimates), we assess the agreement between the model-predicted ramp and the ramp observed in the data. We fit linear spatial ramps to the displacement data at each timeseries epoch:

$$d(t_k) = r_x x + r_y y + d_r(t_k) = r(t_k) + d_r(t_k)$$

69

81

where $d(t_k)$ represents the displacement map at time t_k (the k-th epoch in the time 70 series of K total dates, $t = t_1, t_2, ..., t_k, ..., t_K$). At each t_k , the spatial linear ramp 71 $r(t_k) = r_x x + r_y y$ is defined relative to a reference point and characterized by slopes 72 r_x and r_y (in mm/km) along the longitude (x) and latitude (y) grids, respectively. The 73 term $d_r(t_k)$ represents the residual higher-frequency component of the time-series map. 74 This same linear ramp fitting procedure is applied to the correction models (ERA5, SET, 75 Ionosphere, and OTL). For each epoch, we compute the ramp magnitude $|r_k| = \sqrt{r_x^2 + r_y^2}$. 76 The comparison between the data-derived ramps and the model-predicted ramps is illus-77 trated in Figure S1, highlighting that the ionosphere and troposphere are the primary 78 contributors to these ramps. 79

 $v = r_x x + r_y y + v_r = r + v_r \tag{4}$

where v is the velocity track. x and y are the east-west and north-south location grid coordinates in kilometers. The parameters r_x and r_y are different than the ones in the time-series ramps in Equations 3. The ramp magnitude is defined as the L-2 norm of the ramp parameters, $|r| = \sqrt{r_x^2 + r_y^2}$, and has a unit of mm/yr/km. We compute the apparent velocity from the each correction term and report their corresponding velocity ramp magnitude (scale to mm/yr per 100 km for readability) in the upper-left corner of Figure 2 (a-h) in the Main Text.

⁸⁹ Text S2-3. Uncertainty in the long-wavelength velocity

When characterizing the observational errors in the InSAR velocity fields, we removed 90 quadratic ramps from the velocity fields before semi-variogram fitting (Main Text Section 91 2.3 and Supplement Text 4-2), yielding noise correlation lengths of approximately 30-10092 km. The deramping ensures the inversion will not penalize the spatial coherence at the 93 longest-wavelength signal across the InSAR scene, and the angular velocity vector can fit 94 the long-wavelength gradient from plate motions. Therefore, by design, our Euler pole 95 inversion assumes unbiased long-wavelength ramps in the observations. However, noise 96 at longer wavelengths (e.g., across the whole 250 km track) was not accounted for. Such 97 long-wavelength ramp noise may originate from different sources than smaller-scale noise, 98 including baseline errors or inaccuracies in estimated ionospheric phases. 99

The low coherence observed in Yemen and Oman suggests the potential for unidentified sub-band ionospheric unwrapping errors in the corresponding InSAR velocity fields. These errors can propagate into the estimated ionospheric phase, introducing uncertainties in the long-wavelength velocity fields, which could bias the inferred Euler pole. To empirically ¹⁰⁴ quantify this gradient uncertainty, we adopt the method from Lemrabet, Doin, Lasserre, ¹⁰⁵ and Durand (2023) and compute the ramp rate error from the time series.

For each InSAR time-series track, following corrections for solid-earth tides, the ERA5 weather model, and ionospheric effects, we fit linear spatial ramps to each epoch as described in Equation 3. We then parameterized the ramp time series $r(t_k)$ with a temporal function (intercept b_0 , linear rate \dot{b} , annual and semi-annual periodic terms b_{c_1} , b_{s_1} , b_{c_2} , and b_{s_2}) as shown in Equation (5):

$$r(t_k) = b_0 + bt_k + b_{c_1}\cos(2\pi t_k) + b_{s_1}\sin(2\pi t_k) + b_{c_2}\cos(4\pi t_k) + b_{s_2}\sin(4\pi t_k) + \epsilon_r(t_k)$$
(5)

¹¹² Note that the linear rate \dot{b} is primarily governed by the plate motion in ITRF2014. As ¹¹³ the Euler pole inversion mainly utilizes long-wavelength velocity gradients, our aim here is ¹¹⁴ to estimate the uncertainty of its empirical proxy: the ramp rate \dot{b} . To do this, we compute ¹¹⁵ the ramp in the residuals $\epsilon_r(t_k)$ and determine the standard deviations across all t_k . The ¹¹⁶ standard deviations of the residual ramp parameters in the east-west and north-south ¹¹⁷ directions, $\sigma_{\epsilon_{r_x}}$ and $\sigma_{\epsilon_{r_y}}$, are linearly propagated to approximate the standard deviation ¹¹⁸ of the velocity ramp rate $\dot{\sigma}_{ramp}$ (Fattahi & Amelung, 2015; Lemrabet et al., 2023):

$$\dot{\sigma}_{\rm ramp} = \frac{\sigma_{\rm ramp}}{\sqrt{N - 6\sigma_t}} \tag{6}$$

where σ_{ramp} represents either $\sigma_{\epsilon_{r_x}}$ or $\sigma_{\epsilon_{r_y}}$, and $\dot{\sigma}_{\text{ramp}}$ is the corresponding ramp rate uncertainty. N is the number of epochs (K), and N – 6 represents the degrees of freedom in Equation (5). σ_t is the standard deviation of all time epochs in years.

For velocity tracks in NW Arabia (Figure), the standard deviations of the east-west 123 ramp rate are approximately 0.0005 mm/year/km, corresponding to about 0.125 mm/year 124 across a 250 km longitude span. The north-south ramp rate error is around 0.0012 125 mm/year/km, equating to 1.2 mm/year along a 1000 km latitudinal track. Ramp rate 126 errors in Oman and Yemen are significantly higher due to lower coherence and rougher 127 terrain hindering reliable ionospheric phase estimation. The east-west errors range from 128 0.0016 to 0.004 mm/year/km (0.4 to 1.0 mm/year across 250 km), and the north-south 129 errors range from 0.0023 to 0.0034 mm/year/km (2.3 to 3.4 mm/year along 1000 km). 130 Generally, likely due to stronger north-south ionospheric phase gradients in the region, 131 the north-south ramp rates exhibit larger errors than the east-west ones when residual 132 ionospheric effects are present. Although we estimate this ramp rate error for all the 133 tracks, we did not include this error into the inversion of the Euler pole. While this could 134 be done to re-weight different track's data, the results might not be altered significantly 135

¹³⁷ Text S3. Euler rotation pole

136

In this section, we describe the equations of Euler pole inversion using InSAR line-ofsight (LOS) velocity fields.

due to the magnitude of the error (< 10% of the actual plate motion gradient).

¹⁴⁰ Text S3-1. The mathematical notation

The Sentinel-1 orbit is defined relative to the International Terrestrial Reference Frame 2014 (ITRF2014). ITRF2014 is an Earth-centered, Earth-fixed (ECEF) reference frame with no net rotation (NNR) of the Earth's surface. Observations of absolute ground ¹⁴⁴ motion relative to the satellite are therefore also described in ITRF2014 (Peter, 2021;
¹⁴⁵ Stephenson et al., 2022; Lazecký et al., 2023).

¹⁴⁶ If the ground motions can be simplified as rigid rotation of a plate, the line-of-sight ¹⁴⁷ (LOS) velocities measured in Sentinel-1, **d**, can be described as rotation around an Euler ¹⁴⁸ vector (McKenzie & Parker, 1967; Morgan, 1968; Cox & Hart, 1986) as

¹⁴⁹
$$\mathbf{d} = \mathbf{G} \mathbf{m}$$
¹⁵⁰
$$[P \times 1] = [P \times 3]\dot{[3} \times 1].$$
⁽⁷⁾

The Euler vector, \mathbf{m} , denotes the angular velocities in three orthogonal components in the Cartesian coordinates, $\mathbf{m} = [\mathbf{m}_{\mathbf{x}}, \mathbf{m}_{\mathbf{y}}, \mathbf{m}_{\mathbf{z}}]^{\mathsf{T}}$ (*rad/year*). The Euler pole rotation vector is linearly mapped to the LOS velocities at each pixel by the linear operator \mathbf{G} , which is fully determined by the coordinates and the radar line-of-sight vector of each ground pixel *i* out of a total number of *P* pixels for which we estimate a deformation velocity

156
$$\mathbf{G} = \begin{bmatrix} \mathbf{G}^{1} \\ \vdots \\ \mathbf{G}^{i} \\ \vdots \\ \mathbf{G}^{P} \end{bmatrix}$$
157
$$i \in [1, \dots, P],$$
(8)

¹⁵⁸ and each row encapsulates three transformation matrices for each pixel independently:

$$\mathbf{G}^{i} = \mathbf{T}_{\Lambda}^{i} \ \mathbf{T}_{\Theta}^{i} \ \mathbf{T}_{X}^{i}$$
(9)

$$[1 \times 3] = [1 \times 3] \cdot [3 \times 3] \cdot [3 \times 3],$$

163

171

where $\mathbf{T}_{\mathbf{X}}^{i}$ is a cross-product matrix to map the rotation Euler pole to the Cartesian velocities at a Cartesian location $\mathbf{r}^{i} = [x, y, z]$, i.e., $\mathbf{v}(\mathbf{r}^{i}) = \mathbf{r}^{i} \times \mathbf{m} = \mathbf{T}_{\mathbf{X}}^{i} \cdot \mathbf{m}$, and

$$\mathbf{T}_{\mathbf{X}}^{i} = \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}_{i}.$$
(10)

The 3-dimensional location in the Cartesian coordinate $\mathbf{r}^{i} = [\mathbf{x}, \mathbf{y}, \mathbf{z}]$ is determined by the latitude λ , longitude ϕ , and height h, at pixel i on an assumed ellipsoid with an equatorial radius R_{e} and an eccentricity e (Bowring, 1976; Sanz Subirana et al., 2011a):

$$\mathbf{r}^{i} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_{e} (1 - e^{2} \sin^{2} \lambda)^{-1/2} \begin{bmatrix} 1+h \\ 1+h \\ (1-e^{2})+h \end{bmatrix} \cdot \begin{bmatrix} \cos \lambda \cos \phi \\ \cos \lambda \sin \phi \\ \sin \lambda \end{bmatrix}.$$
(11)

The matrix \mathbf{T}_{Θ}^{i} transforms from the Cartesian velocity at a given longitude ϕ and latitude λ into the local planar motion in east, north, and up components (Sanz Subirana et al., 2011b):

$$\mathbf{T}_{\Theta}^{i} = \begin{bmatrix} -\sin\lambda & \cos\lambda & 0\\ -\sin\phi\cos\lambda & -\sin\phi\sin\lambda & \cos\phi\\ \cos\phi\cos\lambda & \cos\phi\sin\lambda & \sin\phi \end{bmatrix}_{i}$$
(12)

The velocities in east, north, and up are then projected into the LOS direction of the 172 satellite by the array $\mathbf{T}_{\Lambda}^{i} = [l_{1}, l_{2}, l_{3}]$, yielding the LOS velocity **d**. \mathbf{T}_{Λ}^{i} is a unit vector 173 pointing along the observed motion. It is often called the line-of-sight (LOS) vector in the 174 context of InSAR, along which the range change, or the LOS motion is derived from the 175 phase interferometry. Note that any motion in the Euclidean space can be represented as 176 a LOS motion with a magnitude along its unit vector of motion. Thus, this projection 177 unit vector can be generalized to map between the east, north, up components and any 178 3 dimensional motion, including observations from InSAR range change, radar or optical 179

X - 11 blacements. In such case, **d**

image offset tracking, and two- or three-component GNSS displacements. In such case, d 180 can be populated by east, north, and up velocities of multiple stations along the single-181 column vector. Accordingly, $\mathbf{T}_{\Lambda}^{i} = [1, 0, 0]$ corresponds to the east row of \mathbf{d} , $\mathbf{T}_{\Lambda}^{i} = [0, 1, 0]$ 182 corresponds to the north row, and $\mathbf{T}^{i}_{\Lambda} = [0, 0, 1]$ corresponds to the up row, respectively. 183 But, one would remove the vertical component from GNSS in a rotation problem on 184 Earth's surface because it will never be fitted. In our special case of single-component 185 InSAR velocity where the LOS projection at each pixel is dictated by the satellite incidence 186 angle θ and azimuth angle ψ , we can write the projection vector as 187

$$\mathbf{T}_{\Lambda}^{i} = \begin{bmatrix} -\sin\theta\sin\psi\\\sin\theta\cos\psi\\\cos\theta \end{bmatrix}_{i}^{\mathsf{T}}.$$
(13)

¹⁸⁹ Note that the plate motion can be measured because incidence and azimuth angles vary ¹⁹⁰ across the SAR scene, so θ and ψ here should differ from pixel to pixel. Plug in Equation 8 ¹⁹¹ to 13, each row of \mathbf{G}^i can be constructed as

$$\mathbf{G}^{i} = \begin{bmatrix} -\sin\theta\sin\psi\\\sin\theta\cos\psi\\\cos\theta \end{bmatrix}_{i}^{\mathsf{T}} \begin{bmatrix} -\sin\lambda&\cos\lambda&0\\-\sin\phi\cos\lambda&-\sin\phi\sin\lambda&\cos\phi\\\cos\phi\cos\lambda&\cos\phi\sin\lambda&\sin\phi \end{bmatrix}_{i} \begin{bmatrix} 0&z&-y\\-z&0&x\\y&-x&0 \end{bmatrix}_{i}, \quad (14)$$

¹⁹³ and Equation 7 can be solved simultaneously for all P InSAR pixels, from one or more ¹⁹⁴ orbital tracks. The above expression generates an absolute velocity in the reference frame. ¹⁹⁵ However, InSAR measurements are always described with respect to a reference point at ¹⁹⁶ \mathbf{r}^* . There is an unknown constant shift, b, between the measured relative velocity and the ¹⁹⁷ absolute velocity in ITRF, \mathbf{d}^* by $\mathbf{d} = \mathbf{d}^* + b$. This shift is track-specific and represents ¹⁹⁸ the absolute plate motion at the reference pixel when the atmospheric noise and the ¹⁹⁹ unrecognized internal deformation at that pixel can be ignored. Unless pre-determined by

:

 $_{200}$ independent GNSS, we need to estimate these shifts and the Euler pole simultaneously $_{201}$ by

204

206

216

$$\mathbf{d}^* = \mathbf{G}^+ \ \mathbf{m}^+ \quad , \tag{15}$$

 $_{203}$ where the model parameter vector having the shift term in this InSAR track becomes

$$\mathbf{m}^{+} = \begin{bmatrix} \mathbf{m}_{\mathbf{x}} \\ \mathbf{m}_{\mathbf{y}} \\ \mathbf{m}_{\mathbf{z}} \\ b \end{bmatrix} \quad . \tag{16}$$

 $_{205}$ And, we append a column of ones, 1, to the linear operator

$$\mathbf{G}^{+} = \begin{bmatrix} \mathbf{G} \ 1 \end{bmatrix} \quad . \tag{17}$$

However, since the similarity of the azimuth angles across the scene (varies $< 1.6^{\circ}$), In-207 SAR LOS velocity with residual noise permits high trade-offs between the pole parameters. 208 The extra unknown shifts in the problem only exacerbate these trade-offs. Consequently, 209 a biased Euler pole can be deceptively compensated by a floating shift for the whole track, 210 fitting the observation equally well. Alternatively, we can adjust the linear model to a 211 common reference pixel in data by subtracting the row corresponding to the reference 212 pixel, $\mathbf{G}^* = \mathbf{G} - \mathbf{G}_{\mathbf{r}^*}$. This approach offers two advantages: it avoids additional trade-offs 213 in model parameters and references the linear model to the same reference point as in the 214 InSAR measurements and their observational errors. The formulation we use becomes 215

$$\mathbf{d}^* = \mathbf{G}^* \ \mathbf{m} \quad . \tag{18}$$

²¹⁷ Text S3-2. Transformation between the Cartesian and Spherical expressions

The Euler pole $(\hat{\mathbf{m}}_{\mathbf{x}}, \hat{\mathbf{m}}_{\mathbf{y}}, \hat{\mathbf{m}}_{\mathbf{z}})$ in ECEF Cartesian coordinates can be transformed to the spherical expression (pole latitude $\lambda_{\mathbf{p}}$, pole longitude $\phi_{\mathbf{p}}$, and pole angular velocity $\omega_{\mathbf{p}}$)

$$\begin{cases} \lambda_{\rm p} = \arctan\left(\frac{{\rm m}_{\rm z}}{\sqrt{{\rm m}_{\rm x}^2 + {\rm m}_{\rm y}^2}}\right) \\ \phi_{\rm p} = \arctan\left(\frac{{\rm m}_{\rm y}}{{\rm m}_{\rm x}}\right) \\ \omega_{\rm p} = |{\bf m}| = \sqrt{{\rm m}_{\rm x}^2 + {\rm m}_{\rm y}^2 + {\rm m}_{\rm z}^2} \end{cases}$$
(19)

220

²²¹ and vice versa

$$\mathbf{m} = w_{\mathrm{p}} \begin{bmatrix} \cos \lambda_{\mathrm{p}} \cos \phi_{\mathrm{p}} \\ \cos \lambda_{\mathrm{p}} \sin \phi_{\mathrm{p}} \\ \sin \lambda_{\mathrm{p}} \end{bmatrix} \quad . \tag{20}$$

The transformation of the model covariance matrix from the Cartesian to Spherical expression is through a Jacobian matrix, \mathbf{J}_{C2S} (Goudarzi et al., 2014):

229

$$\hat{\mathbf{C}}_{\mathrm{m}}^{\mathrm{sph}} = \mathbf{J}_{\mathrm{C2S}} \hat{\mathbf{C}}_{\mathrm{m}} \mathbf{J}_{\mathrm{C2S}}^{\mathsf{T}} \quad , \qquad (21)$$

²²⁶ where

$$\mathbf{J}_{227} \qquad \mathbf{J}_{C2S} = \begin{bmatrix} \frac{\partial \lambda_{p}}{\partial \mathbf{m}_{x}} & \frac{\partial \lambda_{p}}{\partial \mathbf{m}_{y}} & \frac{\partial \lambda_{p}}{\partial \mathbf{m}_{z}} \\ \frac{\partial \phi_{p}}{\partial \mathbf{m}_{x}} & \frac{\partial \phi_{p}}{\partial \mathbf{m}_{y}} & \frac{\partial \phi_{p}}{\partial \mathbf{m}_{z}} \\ \frac{\partial \phi_{p}}{\partial \mathbf{m}_{x}} & \frac{\partial \phi_{p}}{\partial \mathbf{m}_{y}} & \frac{\partial \phi_{p}}{\partial \mathbf{m}_{z}} \end{bmatrix} = \begin{bmatrix} \frac{-\mathbf{m}_{x}\mathbf{m}_{z}}{w_{p}^{2}\sqrt{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}}} & \frac{-\mathbf{m}_{y}\mathbf{m}_{z}}{w_{p}^{2}\sqrt{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}}} & \frac{w_{p}^{2}}{w_{p}^{2}} \\ \frac{-\mathbf{m}_{y}}{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}} & \frac{\mathbf{m}_{x}}{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}} & 0 \\ \frac{\partial \omega_{p}}{\partial \mathbf{m}_{x}} & \frac{\partial \omega_{p}}{\partial \mathbf{m}_{y}} & \frac{\partial \omega_{p}}{\partial \mathbf{m}_{z}} \end{bmatrix} = \begin{bmatrix} \frac{-\mathbf{m}_{y}\mathbf{m}_{x}}{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}} & \frac{-\mathbf{m}_{y}\mathbf{m}_{x}}{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}} & \frac{1}{w_{p}^{2}} \\ \frac{\mathbf{m}_{x}}{\mathbf{m}_{y}} & \frac{\mathbf{m}_{y}}{\mathbf{m}_{x}^{2}+\mathbf{m}_{y}^{2}} & 0 \\ \frac{\mathbf{m}_{x}}{\mathbf{m}_{y}} & \frac{\mathbf{m}_{y}}{\mathbf{m}_{y}} & \frac{\mathbf{m}_{z}}{\mathbf{m}_{y}} \end{bmatrix} \end{bmatrix}$$
(22)

²²⁸ The inverse transformation from the Spherical to Cartesian expression is through:

$$\hat{\mathbf{C}}_{\mathrm{m}} = \mathbf{J}_{\mathrm{S2C}} \hat{\mathbf{C}}_{\mathrm{m}}^{\mathrm{sph}} \mathbf{J}_{\mathrm{S2C}}^{\mathsf{T}} \quad , \tag{23}$$

230 where

$$\mathbf{J}_{S2C} = \begin{bmatrix} \frac{\partial \mathbf{m}_{\mathbf{x}}}{\partial \lambda_{\mathbf{p}}} & \frac{\partial \mathbf{m}_{\mathbf{x}}}{\partial \phi_{\mathbf{p}}} & \frac{\partial \mathbf{m}_{\mathbf{x}}}{\partial w_{\mathbf{p}}} \\ \frac{\partial \mathbf{m}_{\mathbf{y}}}{\partial \lambda_{\mathbf{p}}} & \frac{\partial \mathbf{m}_{\mathbf{y}}}{\partial \phi_{\mathbf{p}}} & \frac{\partial \mathbf{m}_{\mathbf{y}}}{\partial w_{\mathbf{p}}} \end{bmatrix} = \begin{bmatrix} -w_{\mathbf{p}} \sin \lambda_{\mathbf{p}} \cos \phi_{\mathbf{p}} & -w_{\mathbf{p}} \cos \lambda_{\mathbf{p}} \sin \phi_{\mathbf{p}} & \cos \lambda_{\mathbf{p}} \cos \phi_{\mathbf{p}} \\ -w_{\mathbf{p}} \sin \lambda_{\mathbf{p}} \sin \phi_{\mathbf{p}} & w_{\mathbf{p}} \cos \lambda_{\mathbf{p}} \cos \phi_{\mathbf{p}} & \cos \lambda_{\mathbf{p}} \sin \phi_{\mathbf{p}} \\ w_{\mathbf{p}} \cos \lambda_{\mathbf{p}} & 0 & \sin \lambda_{\mathbf{p}} \end{bmatrix} \quad .$$

$$(24)$$

:

231

²³² Text S4. Formulation of the linear problem

²³³ Text S4-1. An example of linear operator, G

241

Each pixel in InSAR data contributes the pixel-wise LOS velocity, d_i , to one row of the d* vector in Equation (12). Each pixel in InSAR data has the unique coordinates and radar imaging geometry that dictate each row, $\mathbf{G}_i = [g_{i1}, g_{i2}, g_{i3}]$ in the linear operator \mathbf{G} (using Equation (8)), such that $d_i = \mathbf{G}_i \mathbf{m}$. We keep the 1-by-3 vector $[g_{i1}, g_{i2}, g_{i3}]$ in a variable form for the convenience of notation, where the first subscript index *i* is the pixel index and the second subscript index is the column index in \mathbf{G} . With total *P* pixels of velocity observations, we have \mathbf{d} (size of *P*-by-1) and a design matrix \mathbf{G} (size of *P*-by-3):

$$\mathbf{G} = \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ \vdots \\ g_{i1} & g_{i2} & g_{i3} \\ \vdots \\ g_{P1} & g_{P2} & g_{P3} \end{bmatrix} \quad .$$
(25)

After constructing the operator \mathbf{G} , we subtract the row corresponds to the reference pixel, $\mathbf{G}^* = \mathbf{G} - \mathbf{G}_{\mathbf{r}^*}$, and follow the formulation in Equation 18 to solve the problem with any least-squares method. The example of the linear operator \mathbf{G} is shown in Figure S7. The *P* pixels of velocity observations (\mathbf{d}) can be acquired from one or several satellite tracks as long as the pixel-wise LOS velocity d_i corresponds to the unique radar imaging geometry used in the linear operator \mathbf{G}_i . For example, having totally *Q* tracks of In-SAR velocity fields (e.g., multiple ascending and descending), we concatenate the linear

:

²⁴⁹ operator in the vertical direction as

$$\mathbf{G} = \begin{bmatrix} \mathbf{g}_{1}^{1} & \mathbf{g}_{2}^{1} & \mathbf{g}_{3}^{1} \\ \mathbf{g}_{1}^{2} & \mathbf{g}_{2}^{2} & \mathbf{g}_{3}^{2} \\ \vdots & \vdots & \vdots \\ \mathbf{g}_{1}^{q} & \mathbf{g}_{2}^{q} & \mathbf{g}_{3}^{q} \\ \vdots & \vdots & \vdots \\ \mathbf{g}_{1}^{Q} & \mathbf{g}_{2}^{Q} & \mathbf{g}_{3}^{Q} \end{bmatrix} , \qquad (26)$$

250

where in each row, \mathbf{g}_1^q , \mathbf{g}_2^q , \mathbf{g}_3^q denotes the column vectors in Equation 25 for the *q*-th InSAR track:

$$\mathbf{g_1^q} = \begin{bmatrix} g_{11} \\ \vdots \\ g_{i1} \\ \vdots \\ g_{P_q 1} \end{bmatrix}, \mathbf{g_2^q} = \begin{bmatrix} g_{12} \\ \vdots \\ g_{i2} \\ \vdots \\ g_{P_q 2} \end{bmatrix}, \mathbf{g_3^q} = \begin{bmatrix} g_{13} \\ \vdots \\ g_{i3} \\ \vdots \\ g_{P_q 3} \end{bmatrix}$$
(27)

253

The pixel index *i* ranges from 1 to the total number of pixels, P_q , in the *q*-th InSAR track.

$_{256}$ Text S4-2. Observational covariance matrix, C_d

²⁵⁷ We characterize the observational error in InSAR-derived velocities using the data co-²⁵⁸ variance matrix, which captures the variance and covariance features Hanssen (2001). The ²⁵⁹ data covariance matrix has a dimension of P-by-P (P being the number of pixels in an ²⁶⁰ InSAR track) and consists of two components,

$$\mathbf{C}_{\mathrm{d}} = \mathbf{C}_{\mathrm{d}_{\mathrm{t}}} + \mathbf{C}_{\mathrm{d}_{\mathrm{s}}} \quad . \tag{28}$$

The temporal term, \mathbf{C}_{d_t} , is a diagonal matrix populated with the variances of the velocity estimates at pixel i, σ_i , determined by the functional-fit residuals assuming uniform Gaussian errors at all epochs as

$$\mathbf{C}_{\mathrm{d}_{\mathrm{t}}} = \begin{bmatrix} \sigma_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sigma_P \end{bmatrix} \quad . \tag{29}$$

The spatial term, C_{d_s} , accounts for the stationary and isotropic noise correlation between nearby pixels, which we attribute to the remaining atmospheric effects after corrections. We use sample semi-variograms $\gamma(h)$ to estimate the InSAR variances as a function of distance between any pixel pair. Due to potential bias from the imperfect assumption of the stationary process of noise, we do not use a sample covariogram method. However, it should be equivalent to the sample semi-variogram method in an ideal case.

The discrete sample semi-variogram value for binned distance class h_c is

273

265

$$\gamma(h_c) = \frac{1}{2N} \sum_{\substack{i=1\\ \|\mathbf{r}_i - \mathbf{r}_j\| \simeq h_c}}^{N} [v(\mathbf{r}_i) - v(\mathbf{r}_j)]^2 \quad , \tag{30}$$

where N being the number of data-point pairs at locations \mathbf{r}_i and \mathbf{r}_j such that $\|\mathbf{r}_i - \mathbf{r}_j\|$ falls inside a distance bin h_c . Thus, when assuming isotropic noise, the semi-variogram depends only on distance h between data points.

We first uniformly downsample the velocity fields to approximately 2.5 km posting. 277 The goal here is to quantify the intermediate range noise structure without sacrificing the 278 ability to fit the longest-wavelength plate motion, thus we first remove a quadratic ramp 279 from the velocity fields before sampling the semi-variograms (Figure S5). The quadratic 280 ramp is parameterized in the form of $v = ux^2 + vy^2 + wxy + ax + by + c$, where v is 281 the velocity track. x and y are the east-west and north-south location grid coordinates 282 in kilometers. The parameters a, b, c, u, v, and w are estimated in a least-squares sense. 283 Then, we randomly pick velocity pairs $v(\mathbf{r}_i)$ and $v(\mathbf{r}_i)$ with distances h up to 300 km 284

:

for each track. We then form the sample semi-variogram $\gamma(h)$ by taking the average in 1-km intervals. The data variance is estimated from the level at which the sample semivariogram $\gamma(h)$ forms a plateau (called "sill") at distances larger than the characteristic length scale of correlation (Figure S6).

For a continuous description of the variogram we fit functions to the sample-variogram. The variance is a positive-definite function. Therefore, we use a function type ensuring positive definiteness, an inverse exponential decay function as

$$\gamma(h) = -(A^2)\exp(\frac{-h}{\lambda}) + \sigma \quad , \tag{31}$$

where A is the scaling factor, λ is the characteristic length of the correlation, and σ is the sill. The covariance function is then the mirror of the semi-variogram, expressing the degeneration of the covariance. In the presence of white noise, the covariance function has a step at a zero lag. We thus parameterize the spatial covariance matrix, \mathbf{C}_{d_s} using the covariance function

298

292

$$\mathbf{C}_{d_s} = \mathbf{C}(h) = (A^2) \exp(\frac{-h}{\lambda}) + \sigma \quad . \tag{32}$$

²⁹⁹ Based on this function, we create the spatial covariance matrix, C_{d_s} . The diagonals ³⁰⁰ are populated with a constant value of σ , the off-diagonals are computed based on the ³⁰¹ distance separations of pixel pairs, h. Our covariance matrices are shown in Figure S8 ³⁰² and S9.

³⁰³ Text S5. Unwrapping error correction

³⁰⁴ Unwrapping errors refer to the wrong integer numbers of cycles (2π radians) being added ³⁰⁵ to the interferometric phase during the two-dimensional phase unwrapping. Unwrapping ³⁰⁶ errors will propagate to the Small-BAseline-Subset (SBAS) time-series phases and bias ³⁰⁷ the phase history. Our datasets contain unwrapping errors near Wadi Arabah valley in ³⁰⁸ Egypt in tracks A058, D094 (the data from these two tracks in the Sinai subplate are ³⁰⁹ not being used in the analysis described in the Main Text), and north-west Arabia track ³¹⁰ D021.

Since the errors are potentially due to intense tropospheric delay variation occurring in 311 areas with sharp elevation change, we first remove the ERA5 model predicted phase from 312 the wrapped interferograms and unwrap the phase (Jolivet et al., 2011). In addition to 313 the stratified tropospheric phases, we also remove the ionospheric phases estimated from 314 the split-spectrum method from the interferograms to further reduce the spatial phase 315 gradients. These approaches do not clear all the unwrapping errors, leaving considerable 316 remaining discontinuities in the velocity fields. Thus, other more delicate methods to 317 correct for the unwrapping errors are needed (Figure S14). 318

Several methods to correct for the unwrapping errors, such as bridging (Biggs et al., 2007; Yunjun et al., 2019) and phase closure (Yunjun et al., 2019) rely on the properly labeled phase connected areas, called connected components. Each component is isolated by the unwrapping error to its neighboring one. However, the connected components in SNAPHU algorithm are not always identified and labeled correctly (also seen in Oliver-Cabrera, Jones, Yunjun, and Simard (2022)). Thus, many of the unwrapping errors :

present in our datasets are not properly labeled (Figure S14). Therefore, we attempt to come up with a way to re-generate the informative labels quantitatively, so that we can apply the unwrapping error correction based on these new labels.

We first make sure to minimize the phase gradients in the interferograms as much as 328 possible before unwrapping. We remove the stratified tropospheric phases using either 329 ERA5 or GACOS. We also remove the estimated ionospheric phases. To re-generate a 330 better set of connected components for all pixels, we compute the number of triplets having 331 non-zero integer ambiguity of closure phase $(T_{int}$ in Yunjun et al. (2019)). Pixels in the 332 same connected region would have the same number of non-zero closure triplets. Thus, we 333 run a clustering algorithm to group the areas based on their T_{int} and generate a new set 334 of connected components. To estimate the number of integer ambiguities in the network, 335 we assume triplet phases should be within $\pm \pi$ and implement a region-based inversion 336 to minimize the regularized L1-norm. To reduce computation, instead of inverting every 337 pixel for the integer ambiguity, we randomly select 100 pixels for each common connected 338 component and conduct the inversion. The median of inverted numbers is used for all 339 pixels within this common component and removed from the phase time series (Yunjun 340 et al., 2019). This approach successfully mitigate the unwrapping errors in tracks D094 341 over the Sinai Peninsula (Figure S14), D021 in the northwest Arabia, and A058 along the 342 Nile river. 343

References

- Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. (2017). ITRF2014
 plate motion model. *Geophysical Journal International*, 209, 1906–1912. doi: 10
 .1093/gji/ggx136
- Biggs, J., Wright, T., Lu, Z., & Parsons, B. (2007). Multi-interferogram method for
 measuring interseismic deformation: Denali Fault, Alaska. *Geophysical Journal In- ternational*, 170, 1165–1179. doi: 10.1111/j.1365-246X.2007.03415.x
- Bowring, B. R. (1976). Transformation from spatial to geographical coordinates. Surv. Rev., 23, 323–327. doi: 10.1179/sre.1976.23.181.323
- ³⁵² Cox, A., & Hart, R. B. (1986). *Plate tectonics: How it works*. John Wiley & Sons.
- Fattahi, H., & Amelung, F. (2015). InSAR bias and uncertainty due to the systematic
 and stochastic tropospheric delay. J. Geophys. Res. Solid Earth, 120, 8758–8773.
 doi: 10.1002/2015JB012419
- Gomba, G., Rodríguez González, F., & De Zan, F. (2017). Ionospheric Phase Screen
 Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR Modes. *IEEE Trans. Geosci. Remote Sens.*, 55, 223–235. doi: 10.1109/TGRS.2016.2604461
- ³⁵⁹ Goudarzi, M. A., Cocard, M., & Santerre, R. (2014). EPC: Matlab software to estimate
 ³⁶⁰ Euler pole parameters. *GPS Solut*, 18, 153–162. doi: 10.1007/s10291-013-0354-4
- Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis.
 Springer Science & Business Media.
- Jolivet, R., Grandin, R., Lasserre, C., Doin, M.-P., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis

365

data. Geophys. Res. Lett., 38. doi: 10.1029/2011GL048757

- Lazecký, M., Hooper, A. J., & Piromthong, P. (2023). InSAR-derived horizontal velocities
 in a global reference frame. *Geophys. Res. Lett.*, 50, e2022GL101173. doi: 10.1029/
 2022GL101173
- Lemrabet, L., Doin, M.-P., Lasserre, C., & Durand, P. (2023). Referencing of continentalscale InSAR-derived velocity fields: Case study of the eastern Tibetan plateau. J. *Geophys. Res. Solid Earth*, 128, e2022JB026251. doi: 10.1029/2022JB026251
- Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the eastern Mediterranean and Middle East and its implications for dynamics. *Annu.*

³⁷⁴ Rev. Earth Planet. Sci., 38, 323–351. doi: 10.1146/annurev-earth-040809-152419

- Liang, C., Agram, P., Simons, M., & Fielding, E. J. (2019). Ionospheric Correction of
 InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data. *IEEE Trans. Geosci. Remote Sens.*, 57, 6755–6773. doi: 10.1109/TGRS.2019.2908494
- ³⁷⁸ McKenzie, D. P., & Parker, R. L. (1967). The North Pacific: An example of tectonics ³⁷⁹ on a sphere. *Nature*, *216*, 1276–1280. doi: 10.1038/2161276a0
- Morgan, W. J. (1968). Rises, trenches, great faults, and crustal blocks. J. Geophys. Res.
 1896-1977, 73, 1959–1982. doi: 10.1029/JB073i006p01959
- Oliver-Cabrera, T., Jones, C. E., Yunjun, Z., & Simard, M. (2022). InSAR phase
 unwrapping error correction for rapid repeat measurements of water level change in
 wetlands. *IEEE Trans. Geosci. Remote Sensing*, 60, 1–15. doi: 10.1109/TGRS.2021
 .3108751
- ³⁸⁶ Peter, H. (2021). Copernicus Sentinel-1, -2 and -3 Precise Orbit Determination Service

387	(CPOD) (Handbook). European Space Agency (ESA).				
388	Sanz Subirana, J., Juan Zornoza, J., & Hernández-Pajares, M.				
389	(2011a). Ellipsoidal and cartesian coordinates conversion - Navipedia.				
390	$https://gssc.esa.int/navipedia/index.php/Ellipsoidal_and_Cartesian_Coordinates_Conversion.$				
391					
392	Sanz Subirana, J., Juan Zornoza, J., & Hernández-Pajares, M. (2011b).				
393	Transformations between $ECEF$ and ENU coordinates - Navipedia.				
394	$https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates.php/Transformations_between_ECEF_brans_ECEF_and_ENU_coordinates.php/Transformations_between_ECEF_and_ENU_coordinates.php/Transformations_between_ECEF_brans_ECEE_ECEF_and_ENU_coordinates.php/Transformations_between_ECEE_and_ENU_coordinates.php/Transbormations$				
395					
396	Stephenson, O. L., Liu, YK., Yunjun, Z., Simons, M., Rosen, P., & Xu, X. (2022). The				
397	impact of plate motions on long-wavelength InSAR-derived velocity fields. <i>Geophys.</i>				
398	Res. Lett., 49, e2022GL099835. doi: 10.1029/2022GL099835				
399	Viltres, R., Jónsson, S., Alothman, A., Liu, S., Leroy, S., Masson, F., Reilinger, R.				
400	(2022). Present-day motion of the Arabian plate. <i>Tectonics</i> , 41, e2021TC007013.				
401	doi: $10.1029/2021TC007013$				
402	Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis:				
403	Unwrapping error correction and noise reduction. Computers & Geosciences, 133 ,				
404	104331. doi: 10.1016/j.cageo.2019.104331				
405	Zheng, Y., Fattahi, H., Agram, P., Simons, M., & Rosen, P. (2022). On closure phase				
406	and systematic bias in multilooked SAR interferometry. IEEE Trans. Geosci. Remote				
407	Sens., 60, 1–11. doi: 10.1109/TGRS.2022.3167648				

:

X - 23

Spherical expression ^a	Unit ^c	Value	1σ
Pole latitude	deg	49.7081	1.7108
Pole longitude	deg	-7.8751	3.7392
Rotation rate	m deg/Ma	0.5514	0.0178
	\max/yr	1.9849	0.0639
Cartesian expression ^b	Unit	Value	1σ
m _x	$\rm deg/Ma$	0.3532	0.0206
	mas/yr	1.2715	0.0742
m _v	deg/Ma	-0.0489	0.0243
·	mas/yr	-0.1759	0.0875
m _z	deg/Ma	0.4206	0.0105
	mas/yr	1.5140	0.0380
The full covariance, $C_{\rm m}~({\rm mas}^2/{\rm yr}^2)$			
	XX	xy	XZ
	2.67062164e-11	-1.08156340e-11	4.67775869e-12
	уу	yz	ZZ
	3.71520731e-11	9.74410320e-12	6.99011278e-12

 Table S1.
 InSAR-derived Euler vector parameters of the Arabian plate

^a The spherical expression is often referred to as the Euler pole location and the rotation rate.

 $^{\rm b}~$ The Cartesian expression denotes the angular velocity vector. The three orthogonal axes x,

y, and z aligns with the $(0^{\circ}N, 0^{\circ}E)$, $(0^{\circ}N, 90^{\circ}E)$, and $90^{\circ}N$ components, respectively.

 $^{\rm c}\,$ deg
: degrees. Ma: million years. yr: years. mas: milliarc
second. rad: radian.

Figure S1. Fitted ramp magnitude at each time-series epoch (observations on x-axis and correction predictions on y-axis). r_{sum} is the correlation coefficient between ramps predicted by the sum of all correction terms and the observed ramps.

Figure S2. Caption next page.

Figure S2. The LOS velocity fields, standard deviations, incidence, and azimuth angles from all nine Sentinel-1 tracks. Velocities and errors are referenced to our prior-selected reference points, the black squared markers.

Figure S3. Standard deviations of the ramp rate, corresponding to $\dot{\sigma}_{ramp}$ in Equation 6.

Figure S4. The 1,000 sets of randomly selected reference points. The criteria for random selection is: temporal coherence > 0.9 (Yunjun et al., 2019), cumulative closure phase exceeds three times the standard deviation (Zheng et al., 2022), an elevation below 1500 m, and be at least 25 km from masked areas. See the Main Text Section 2.3.

Figure S5. Quadratic deramping before sampling the semi-variograms. See Suppl. Text S4-2.

Figure S6. Sample semi-variograms and covariograms. The exponential functions fitted the sample covariograms. The sill σ is marked by the grey band. The value of σ is used to fill in the diagonals of the covariance matrix, \mathbf{C}_{d_s} . Three times of the characteristic length scales λ is marked by the dashed line. See Suppl. Text S4-2.

Figure S7. The linear operator G, which transforms the Cartesian rotation parameters to the nine InSAR LOS velocities, normalized by the Earth's radius 6378.137 km. See Suppl. Text S3-1.

Figure S8. The data covariance matrices $\mathbf{C}_{\chi} = \mathbf{C}_{d} + \mathbf{C}_{p}$. To display the variability of dynamic range, the color bar shows the squared root of \mathbf{C}_{χ} . The observational covariance is composed of the temporal term, $\mathbf{C}_{d_{t}}$ based on the prior-selected reference points (Figure S2), and the spatial term, $\mathbf{C}_{d_{s}}$ from the semi-variograms (Figure S6). \mathbf{C}_{p} quantifies the uncertainty due to the reference point, see Main Text Section 2.3 and Suppl. Text S3-2.

Figure S9. The diagonals of the covariance matrices in Figure S8. The values displayed here are the squared roots of the covariance for plotting purposes. The blue dots indicate the diagonals of C_{d_t} , in which the lowest point marks the chosen reference pixel in each track in this realization. The red line indicates the diagonals of C_{d_s} , which is constant within each velocity track. The orange dots indicate the epistemic uncertainty, C_p , of the reference point estimated from the entire 1,000 realizations.

Figure S10. Caption next page.

Figure S10. Euler fitting results. Rows from top to bottom: Observed velocity, velocity standard deviation, the velocity field from the estimated Euler pole, post-fit residual velocity, the velocity predicted from the ITRF2014 plate motion model, the difference between our pole and the ITRF2014 pole. See the Main Text Figure 3 and the pole marked by "x" in Figure 4.

Figure S11. The histograms of velocities, standard deviations, and post-fit residuals, for all the tracks. These corresponds to the data and post-fit residuals in Figure S10.

Figure S12. The comparison with GPS horizontal velocities projected to LOS in the Arabianfixed reference frame. Values are taken from the Main Text Figure 3d.

Figure S13. Profiles horizontal velocities tangential to the plate motion direction of the ITRF2014 Arabia model (Altamimi et al., 2017). The x-axis is the great-arc angle from the ITRF2014 pole. (a) The pure InSAR-derived pole is the posterior after considering the ensemble of the random reference points in the Main Text. (b) The joint inversion with InSAR-collocated GNSS stations taken from the network (white squares) in Viltres et al. (2022). The outlier sites (outside the 2-sigma bound of Altamimi et al., prediction; the grey squares) are stations close to the Afar rifting zone and the Dead Sea Transform. (c) The line-of-sight (LOS) velocities from nine InSAR tracks. The red and blue scatter dots are ascending and descending pixel-wise LOS velocities in each track, with lighter color indicating the observations and darker color the posterior pole predictions. The grey dots is the predicted LOS velocity profiles using a nominal LOS geometry across the plate. Red and blue lines are InSAR's posterior predictions, while the grey line is predicted using Altamimire 2007, 2025, 4:44pm

Figure S14. The correction of unwrapping errors using phase misclosure, demonstrated using descending track D094 in the Sinai Peninsula. Top: the original interferometric stack following the processing workflow described in Main Text Section 2.1. Middle: The results from a stack of interferograms with tropospheric model subtracted before unwrapping. Bottom: The results from a stack of interferograms with both model and ionospheric delays subtracted before unwrapping, then apply the phase-closure unwrapping error correction based on T_{int} , as described in Supplementary Text S3. We can visually see unwrapping errors in the temporal coherence and the velocity fields. The data from this orbital track is not used in the Main Text. April 30, 2025, 4:44pm