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G E O P H Y S I C S

Forecasting mechanical failure and the 26 June 2018 
eruption of Sierra Negra Volcano, Galápagos, Ecuador
Patricia M. Gregg1*, Yan Zhan2, Falk Amelung3, Dennis Geist4,5, Patricia Mothes6,  
Seid Koric7,8, Zhang Yunjun9

Using recent advancements in high-performance computing data assimilation to combine satellite InSAR data with 
numerical models, the prolonged unrest of the Sierra Negra volcano in the Galápagos was tracked to provide a fortuitous, 
but successful, forecast 5 months in advance of the 26 June 2018 eruption. Subsequent numerical simulations 
reveal that the evolution of the stress state in the host rock surrounding the Sierra Negra magma system likely 
controlled eruption timing. While changes in magma reservoir pressure remained modest (<15 MPa), modeled 
widespread Mohr-Coulomb failure is coincident with the timing of the 26 June 2018 moment magnitude 5.4 earthquake 
and subsequent eruption. Coulomb stress transfer models suggest that the faulting event triggered the 2018 eruption 
by encouraging tensile failure along the northern portion of the caldera. These findings provide a critical framework 
for understanding Sierra Negra’s eruption cycles and evaluating the potential and timing of future eruptions.

INTRODUCTION
One of the great challenges in the field of volcanology is to develop 
quantitative models to investigate the processes that lead to volcanic 
eruptions and use these models to provide eruption forecasts (1). 
Meeting this challenge requires the development of models capable 
of interpreting field observations and tracking the evolution of a 
magma system. One widely used observation of volcanic unrest is 
ground deformation. As magma accumulates in a subsurface reser-
voir, the overlying ground surface above it swells (2). The surface 
signal, captured by satellite or ground measurements, can be inverted 
to estimate volume changes in a burried magma source. Deforma-
tion signals often begin months to years before an eruption, provid-
ing early warning of volcanic activity (3). However, linking a surface 
deformation signal to eruption likelihood is challenging, and, fre-
quently, the magnitude of the signal does not provide an accurate 
indication of eruption potential or timing (4). In particular, volcano 
inflation does not always lead to an eruption and eruptions can oc-
cur when no preceding surface displacement is detected (5). Hence, 
short-term observations, such as changes in seismicity on the time 
scales of minutes to hours, have typically been more successful pre-
dictors of an impending eruption (6). However, clear signals are often 
lacking [e.g., the lack of seismic precursors at many Aleutian volca-
noes (7) or the lack of precursory deformation at open volcanic sys-
tems (8)], making eruption forecasting difficult.

Multiphysics-based numerical modeling approaches provide a 
means for investigating eruption catalysts by calculating the evolu-
tion of the host rock stress and reservoir pressure during periods of 
unrest (9, 10). A critical advancement is combining these models 
with geophysical observations to track a system’s evolution in real 

time. Model-data fusion frameworks, often used in climate model-
ing (11), are key for investigating how a system evolves. The ensem-
ble Kalman filter (EnKF), an ensemble-based Markov chain Monte 
Carlo (MCMC) sequential data assimilation approach (12), has re-
cently been adapted for tracking volcano system evolution (13–15). 
The EnKF has shown great promise for assimilating large geospatial 
data, such as satellite interferometric synthetic aperture radar 
(InSAR) and ground-based global navigation satellite system (GNSS) 
deformation data, into multiphysics volcano finite element method 
(FEM) models (16). The high-performance computing (HPC), EnKF 
approach provides updates of the volcano system state through 
time, including an estimation of host rock stress, failure, and magma 
reservoir pressure. Estimations of stress and failure provide insight 
into the stability of a magma system and potential triggering mech-
anisms for magma migration and eruption, which is particularly 
beneficial in the absence of clear precursors (16).

Sierra Negra, the most voluminous of the Galápagos volcanoes, 
is a 60 × 40 km basaltic shield volcano that occupies most of the 
southern portion of Isabela Island (Fig. 1) (17). Sierra Negra has 
experienced at least seven historic eruptions since 1911, with an erup-
tion occurring approximately every 15 years (17, 18). Sierra Negra’s 
prolonged intereruption cycle with extensive uplift and seismicity 
provides a unique natural laboratory to investigate stress evolution 
of a volcano and potential eruption precursors and catalysts while 
testing the EnKF approach. Sierra Negra experienced an extended 
period of unrest before its two most recent eruptions (in 2005 and 
2018). Preceding its 2005 eruption, caldera-centered uplift >5 m 
was observed, culminating in a moment magnitude (Mw) 5.5 earth-
quake on the trapdoor fault system in the southern caldera floor 
followed within hours by an eruption on 22 October 2005 (18, 19). 
By the spring of 2018, the magnitude of the observed inflation since 
2005 had reached 6.5 m (20, 21). The 26 June 2018 eruption com-
menced at 1340 Local Time (LT) and was preceded by a rapid 
increase in seismicity including a Mw 5.4 event that struck at 0315 LT, 
also along the southern side of the caldera trapdoor fault system 
(Fig. 1) (20, 22). The 2018 eruption lasted for 58 days and covered a 
30.6-km2 area in fresh lava flows (22).

Several questions surround the protracted unrest periods observed 
at Sierra Negra, including how its magma system endures such 
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substantial and rapid inflation before eruption. Previous studies have 
pointed to the release of stress accumulated due to magma intrusion 
by slip along trapdoor faults in the overlying roof (19, 23–25) and 
the ductile nature of the warm host rock limiting stress accumula-
tion near the reservoir (10). These hypothesized mechanisms for 
stress relief and the rheological buffering of eruption-driving failure 
accumulation make Sierra Negra both a challenging and attractive 
target for testing new volcano forecasting techniques.

In this investigation, the EnKF approach is used to evaluate the 
large-magnitude uplift observed at Sierra Negra volcano leading up 
to its 26 June 2018 eruption. In January 2018, 5 months before the 
eruption, an initial EnKF forecast for Sierra Negra was completed 
using selected Sentinel-1 InSAR observations from 2014 to 2018. 
The forecast indicated that an eruption was likely to occur between 
25 June 2018 and 5 July 2018 due to the significant and widespread 
accumulation of brittle failure in the host rock surrounding the 
magma reservoir. After the 2018 eruption, additional EnKF experi-
ments were conducted using additional InSAR deformation data to 
evaluate the success of the pre-eruption forecast and provide strategies 
for conducting future forecasts. This paper explores how the January 
2018 forecast for Sierra Negra was both a lucky accident and an 
encouraging sign for transformative advances in volcano forecasting. 
The primary goals of this study are (i) to evaluate the eruption pre-
cursor signals and eruption triggering mechanisms at Sierra Negra 
and (ii) to assess the ability of the EnKF approach to accurately track 
and forecast the system state through time.

RESULTS
In the EnKF analysis presented here, an ensemble containing 240 
three-dimensional (3D) FEM models was updated sequentially 

through time as new InSAR observations became available. Each of 
the 240 models in the ensemble is unique, defined by their parameter 
values. The initial ensemble of models was generated using a Monte 
Carlo approach to choose parameter values. Hence, we only pre-
scribed the magma reservoir as a spheroidal geometry but allowed 
the EnKF to determine the best-fit parameters for the ellipsoid shape 
(size, prolate versus oblate) and its location (see table S3 for param-
eter initial values). During each EnKF analysis step, the parameter 
values for all the models are updated to nudge the ensemble toward 
a better fit with the observations (see fig. S2 for details of the EnKF 
workflow) and, over time, they converge. Variation in the spread of 
the model parameters allows for an evaluation of the statistical 
probability of a particular model state and an indication of the EnKF 
performance. For example, a divergence in the ensemble results in-
dicated by a sudden expansion of the parameter space might suggest 
that the EnKF is having trouble fitting the observations (12).

Five months before the 26 June 2018 eruption of Sierra Negra, 
we completed an EnKF analysis to track the volcano’s stress evolu-
tion that turned out to successfully forecast the timing of the subse-
quent eruption. Because the initial forecast was conducted as a test 
using a simple elastic rheology and did not assimilate InSAR data 
before 2014 or after January 2018, we also conducted retroactive 
forecasts (which we refer to as “hindcasts”) to evaluate our findings. 
The following section details the results of four EnKF numerical 
experiments, which are evaluated on their ability to track the stabil-
ity of the Sierra Negra magma system through time (Fig. 2 and table 
S3): (i) the pre-eruption forecast that assimilated ground deformation 
observations from descending InSAR tracks into an elastic FEM 
model with a constant Young’s modulus, which was conducted before 
the 2018 eruption; (ii) a post-eruption “hindcast” that assimilated all 
pre-eruption descending InSAR observations into an elastic FEM 
model with a constant Young’s modulus, “nTd” (non–temperature- 
dependent); (iii) a post-eruption hindcast that assimilated descending 
InSAR observations into an elastic FEM model with a temperature- 
dependent Young’s modulus, “Td”; and (iv) a post-eruption hindcast 
that assimilated both ascending and descending InSAR observations 
into an elastic FEM model with a temperature-dependent Young’s 
modulus, “Tot.” The hindcasts with only descending InSAR data 
are included to provide direct comparisons with the forecast. The 
full hindcast, Tot, is the most complete evaluation of the InSAR 
time series data.

Pre-eruption forecast
In the fall of 2017, Sierra Negra was chosen as a target for testing 
near real-time data assimilation using the EnKF due to its ex-
tensive, ongoing deformation signal observed by the Sentinel-1 
satellite. Although GNSS data are also available for most of the pre- 
eruption deformation cycle (20), our efforts focus on InSAR data 
assimilation because the ability to evaluate volcanic activity using 
satellite data in remote locations where ground-based observations 
are unavailable is critical for assessing hazards at many volcanoes 
(5). In addition, InSAR data provide good spatial constraints reduc-
ing nonuniqueness in the model fit, and the lower temporal resolu-
tion is less computationally expensive. An important consideration 
when using data assimilation techniques, such as the EnKF, is that 
each time step involves significant processing time. Future efforts 
will incorporate GNSS into the deformation time series data analy-
sis as the EnKF technique is further developed and computational 
efficiency is improved.

Fig. 1. Sierra Negra’s 26 June 2018 Mw 5.4 earthquake and eruption. The erup-
tion commenced on 26 June at 1340 LT from five fissures (white dashed lines, indi-
cated by F1 to F5) with resultant lava flows indicated by red shaded regions (22). 
Black dashed lines indicate the location of the trapdoor fault system on the south-
ern and southwestern portion of the caldera. Focal mechanism shows the location 
of the Mw 5.4 earthquake.
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The pre-eruption forecast made in January 2018 used a time series 
of InSAR line-of-sight (LOS) displacement calculated from 69 de-
scending acquisition observations (07 March 2015 to 26 January 2018) 
from the Sentinel-1 satellite. We did not include InSAR data avail-
able between 2005 and 2014 because this initial experiment with EnKF 
data assimilation was tailored to using Sentinel-1 InSAR data (only 

available after December 2014). Of particular interest was how the 
deformation source geometry varied through time because rapid 
changes in source geometry and magma input may affect its stability 
and potential for eruption. However, after an initial spin up period 
(~10 time steps) as the ensemble stabilized, the geometry and loca-
tion of the model reservoir converged and remained relatively con-
stant throughout the remainder of the data assimilation (Fig. 2, 
C to J). Pressure increase was estimated along the boundary of the 
reservoir (Fig. 2G). Note that, because the EnKF begins with the 
first InSAR observation in 2015, the full magnitude of pressure ac-
cumulated after the 2005 eruption was not tracked, but rather the 
change in pressure between 2015 and 2018 was evaluated.

After incorporating the 26 January 2018 InSAR observations, 
the conditions for failure around the magma reservoir were evaluated 
to determine the stability of the system (Fig. 3). Andersonian fault 
orientations were calculated from the modeled stress state in the re-
gions of predicted Mohr-Coulomb failure [using a value of C = 10 MPa 
for cohesion, following previous analyses of the 2005 eruption (10)] 
to investigate potential faulting (9, 26). In the mean model from the 
EnKF ensemble, some elements near the southern edge of the magma 
reservoir exhibited tensile stresses >1 MPa, areas of Mohr-Coulomb 
failure were observed in the overlying roof, and pressure change in 
the magma reservoir was ~8 MPa (Figs. 2G and 3A).

The calculated tensile stresses, pressure, and shear failure on 
26 January 2018, 5 months before the eruption, were clearly not 
significant enough to drive eruption. A year-long forecast was 
produced by propagating the mean parameter values (and rates of 
change) from the EnKF ensemble forward through time to evaluate 
the stability of the system if it were to stay on this same trajectory. 
Because the pressure evolution was prescribed, the forecast model 
estimated magma system failure by investigating Mohr-Coulomb 
failure in the host rock and tensile failure along the magma reser-
voir boundary. As the model forecast progressed, calculated 
stress and failure accumulate in the roof above the magma reser-
voir and became more widespread (Fig. 3, B and C). The forecast 
model produced in January 2018 indicated tensile failure at the 
magma reservoir and through-going Mohr-Coulomb failure (i.e., 
continuous shear failure from the surface of the model to the 
boundary of the pressure source) was likely to occur between 
25 June 2018 and 5 July 2018 (Fig. 3C). The 2018 forecast for Sierra 
Negra was presented in March 2018 at the UNAVCO (University 
NAVSTAR Consortium) Science Workshop as a rolling 10-day 
forecast. The forecast tracked the evolution of failure through 2018 
and flagged the period of 26 June to 5 July 2018 as a potential time 
period for magma system failure (leading to eruption) due to 
through-going Mohr-Coulomb failure (27).

Several caveats were discussed at the UNAVCO 2018 workshop 
including the lack of a temperature-dependent rheology in the fore-
cast, the assumption of the failure criteria and host rock strength 
(e.g., cohesion and tensile strength), the lack of the consideration of 
the full stress evolution following the 2005 eruption (i.e., what 
was the initial stress state in early 2015?), and the assumption of the 
magma system maintaining its January 2018 trajectory going for-
ward. Because our initial forecast for Sierra Negra was conducted as 
a test for the presentation at the March 2018 UNAVCO Science 
Workshop, we did not update the forecast in the months leading up 
to the 26 June eruption. In addition, we had not yet fully tested the 
temperature-dependent rheology FEM in the EnKF, so that is why 
it was not included in the initial forecast. Last, we had only used 
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Fig. 2. EnKF parameter estimation. (A) The 3D FEM model setup for a pressurized 
reservoir. Full model details are provided in the Supplementary Materials. Four 
EnKF model suites were run to track the evolving Sierra Negra magma system. 
(B) The ellipsoidal pressure source in the FEM is free to rotate and dip in up-down 
(U), east-west (E), and north-south (N) space. The pre-eruption forecast model uses 
selected Sentinel-1 InSAR data from December 2014 to 26 January 2018 (red dots 
indicating the ensemble mean, with orange error bars indicating 2-sigma SD). 
Subsequently, three hindcasts were conducted using additional Sentinel-1 InSAR 
data up to the eruption: a non–temperature-dependent elastic model that assimi-
lates descending InSAR data only (nTd; black dots with gray error bars, depicting 
2-sigma SD), a model with a temperature-dependent Young’s modulus that assim-
ilates descending InSAR data only (Td; blue dots with blue error bars), and a 
temperature-dependent model which assimilates both ascending and descending 
InSAR observations (Tot; green dots with green error bars). (C to E) Predicted spatial 
parameters, X and Y, and depth, Z. (F and H) Geometrical constraints, R1 and R2. (G) 
The evolution of magma reservoir pressure, dP. A pressure evolution was produced 
for the forecast on the basis of the trajectory of the previous 2 years of deformation 
(red solid line). (I) The dip of the reservoir, . (J) The strike of the longer R1 axis of the 
ellipsoidal reservoir, .
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preliminary InSAR data in the forecast from descending obser-
vations for computational expediency. Given these many caveats, 
additional numerical experiments are necessary to evaluate the suc-
cessful outcome of the forecast.

Post-eruption hindcasts
The Sierra Negra EnKF hindcasts (retroactive forecasts) use a time 
series of InSAR LOS displacement calculated from 98 descending 
acquisitions (Track 128, 13 December 2014 to 19 June 2018) and 42 
ascending acquisitions (Track 106, 19 November 2016 to 18 June 2018) 
from the Sentinel-1 satellite (fig. S5). At each time step between 
InSAR scenes, the 240-member ensemble of 3D FEM models was 
calculated by COMSOL Multiphysics. As previous modeling efforts 
indicate that a temperature-dependent rheology may be necessary for 
Sierra Negra (10), two of the hindcasts included an elastic rheology 
with a temperature-dependent Young’s modulus. One temperature- 
dependent hindcast used only descending InSAR observations for 

direct comparison with the pre-eruption forecast, while the other 
assimilated both ascending and descending observations into the 
temperature-dependent model (Tot). A non–temperature-dependent 
hindcast was provided for comparison. Since previous studies indi-
cate that the viscous component of the rheology may be negligible 
for the time scale of the evaluated unrest period (28), the EnKF has 
been developed to work with elastic rather than viscoelastic consti-
tutive models in the finite element analysis.

There is generally very close agreement between the forecast and 
hindcasts as to the location and geometry of the pressure source 
(Fig. 2). Small differences are likely due to the improved InSAR 
time series data produced for the hindcast and improvements to the 
EnKF method. The largest differences between the four experiments 
appear in the estimation of pressure change (Fig. 2G), which varies 
from ~9 MPa at the time of the eruption for the total hindcast 
(Tot, green dots) to 30 MPa of pressure change in the temperature- 
dependent hindcast (blue dots). The increasing model covariance in 
the Td model, as observed by the expanding 2-sigma error bars, is 
due to a test of the EnKF for the Td model in which the parameters 
are normalized such that overpressure and radius have the same 
magnitude. Since parameter scaling did not improve the EnKF per-
formance, and decreased its performance, it was not used in subsequent 
experiments. The spread in the ensemble from the Tot hindcast, 
which uses both ascending and descending InSAR observations, re-
mains low, indicating a higher EnKF confidence.

An advantage of the ensemble modeling approach is that the 
percentage of models in failure can be tracked for a statistical evalu-
ation of the potential eruption triggering mechanisms (Fig. 4). We 
use the total hindcast (Tot) to evaluate system evolution in the lead 
up to the eruption since it assimilated the most complete InSAR 
dataset and resulted in the best EnKF performance. The percentage 
of ensemble members experiencing Mohr-Coulomb failure in the 
host rock (Fig. 4A) and tensile failure along the reservoir boundary 
(Fig. 4B) is tracked at each data assimilation time step. As the cohe-
sion (C) and tensile strength (Tc) of the rock are uncertain, several 
values are evaluated for each. In late 2017, a rise in the percent of 
models in the EnKF ensemble experiencing Mohr-Coulomb failure, 
using a cohesion value of C = 20 MPa, coincides with an increase in 
the recorded seismicity in the Sierra Negra caldera (22). By the end 
of 2017, >60% of the models in the EnKF ensemble experienced 
Mohr-Coulomb failure (C = 20 MPa) in the roof above the reser-
voir. However, during this same period, <40% of the models in 
the EnKF ensemble experienced tensile failure along the reservoir 
boundary (Tc ≤ 1 MPa; Fig. 4B), and the mean ensemble model 
calculates no tensile failure.

In the lead up to the 26 June eruption, a greater percentage of 
models exhibit reservoir tensile failure (Fig. 4B) as the estimated 
change in pressure increases to 10 MPa (Fig. 2G). In the time steps 
before the eruption, >80% of models indicate tensile failure focused 
along the southern, shallower edge of the magma reservoir (Tc = 
5 MPa; Fig. 4D), opposite of where most of the fissures erupted 
along the northern rim and flanks of the caldera (Fig. 1B). Curiously, 
the reservoir beneath the northern region of the caldera does not 
appear to be in tensile failure at the final time step in any of the 
ensemble models (Tc = 1 MPa). Rather, the northern side of the 
magma system is calculated to have remained in compression lead-
ing up to the eruption. Therefore, an additional catalyst or system 
wide stress change was apparently required to promote tensile fail-
ure and dike initiation to the north.
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Andersonian fault orientations are calculated from the modeled 
stress state in the regions of predicted Mohr-Coulomb failure (here 
using a cohesion value of C = 10 MPa to be consistent with the 
pre-eruption forecast) to investigate potential faulting sources 
(Fig. 4, C and D) (9, 26). By late 2017, significant regions of the 
shallow roof experience shear failure (Fig. 4C). Normal faulting is 
predicted directly above the pressure source, with reverse faulting 
calculated above the outer edges. As the model progressed through 
2018, the area of failure became more extensive and, by 26 June, 
shear failure was calculated to be through-going in the entire south-
ern region of the system (C = 10 MPa).

Ten hours before the 26 June eruption, a Mw 5.4 earthquake 
struck on the southern portion of the Sierra Negra caldera along a 
north-dipping reverse fault coincident with the region of extensive 
Mohr-Coulomb failure calculated by the EnKF hindcast (20, 22). 
The calculated moment tensor source of the earthquake is in agree-
ment with model predicted fault orientations (Fig. 4D). On the 
basis of previous calculations indicating that the 2005 eruption of 
Sierra Negra may have been triggered by a Mw 5.5 earthquake in a 
similar location (10), we investigated the stress change due to the 
26 June earthquake using the U.S. Geological Survey (USGS) Coulomb 
3.4 software (29, 30). Coulomb static stress change indicates that the 
region to the north of the earthquake may have experienced signif-
icant unclamping in response to the event (Fig. 5). Since the magma 
reservoir was near tensile failure but had not yet ruptured, the trap-
door faulting event almost certainly triggered eruption. In addition, 
compressional stress is estimated to increase directly above the res-
ervoir, promoting dike deflection and fissure opening to the north 
of the caldera (Fig. 5A). The trapdoor earthquake appears to have 
buffered the model-predicted tensile failure along the south edge of 
the reservoir, allowing the coulomb static stress change to induced 
failure on the northern edge instead.

DISCUSSION
Seismic precursors and earthquake triggering
A key feature of the Sierra Negra magma system is the interplay 
between the caldera trapdoor fault system and the magma chamber 
(3, 19, 20, 31). In the total hindcast (Tot) of the Sierra Negra system, 
overpressure and tensile failure remain insignificant, while shear 
failure becomes widespread in the surrounding crust. Given the 
timing and spatial location of the eruption in context with the Mw 
5.4 earthquake, and the similarity to the sequence in 2005, it is likely 
(almost certain) that the two are intrinsically linked. If the Mw 
5.4 faulting event had not occurred, then the EnKF indicates that the 
magma system was tending toward increasing tensile stress along 
the northern and southern edges of the reservoir (Fig. 3, C and D) 
and an eruption triggered through dike initiation was increasingly 
likely. However, it appears that the timing was expedited by the 
trapdoor faulting event.

The initial stress state
A critical issue in volcano forecasting is determining the initial stress 
state of the system. Unfortunately, capturing a full eruption cycle 
from an initial ambient stress state through to eruption is a difficult 
prospect, given that few systems have long-term monitoring span-
ning multiple eruptions, and a system may not reach a fully relaxed 
stress state after an eruption before continued unrest. In the case of 
Sierra Negra, the model forecasts and hindcasts were initiated when 
Sentinel-1 InSAR data became available in 2014, thus neglecting the 
prior decade-long stress evolution, which followed its 2005 erup-
tion. During this time period, upward of 4 m of uplift was recorded 
by GNSS (20), which is absent in the Sentinel-1 InSAR only ap-
proach. Capturing a full eruption cycle with the complete magni-
tude of deformation is an important next step in the development 
and testing of the EnKF method.
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Fortunately, in the absence of a full eruption cycle, the EnKF can 
be tuned to capture failure and stress change as the system evolves. 
The rheology of the host rock assumed in the model can be adjusted 
in the absence of information on the pre-existing stress state. In the 
case of a protracted unrest period, a weaker crust is necessary to 
inhibit failure and eruption of the system. In that sense, the weak-
ened Young’s modulus provided by a temperature-dependent rhe-
ology was the key for the Sierra Negra hindcasts. In addition, the 
chosen failure criteria are equally important. Hence, the failure cri-
teria used in this investigation likely reflect a minimum rather than 
the true failure envelope for the system. Were the entire deforma-
tion period tracked, a higher tensile strength and cohesion would have 
been necessary to match the EnKF forecasts with the observations 

of seismicity and the timing of eruption at Sierra Negra. Future rock 
deformation experiments are necessary to constrain parameters 
such as cohesion and tensile strength. Until then, tracking a variety 
of failure envelopes is required.

Pressure evolution in the lead up to the eruption
A critical or maximum overpressure is often cited as a means for 
triggering an eruption through the initiation and propagation of a 
dike (32). Our approach does not preclude pressure as an eruption 
catalyst but rather postulates that pressure buildup in a magma sys-
tem is the means for promoting tensile and/or shear failure, which, 
in turn, triggers magma migration that may lead to eruption. How-
ever, volume change without significant overpressurization will 
result in the same strain accumulation in the host rock, leading to 
tensile and/or shear failure. Unfortunately, it is difficult to differen-
tiate between the two (volume versus pressure) because of inherent 
nonuniqueness of the modeling approach (33). The key, however, is 
estimating the stress in the host rock to determine whether the areas 
surrounding a magma system are near to failure.

The pressure state of the magma system may be linked to the 
intensity of the subsequent eruption. Hence, a key observation for 
constraining the pre-eruption magma reservoirs pressure state might 
be the magnitude of the eruption. In the case of the 2018 eruption of 
Sierra Negra, pressure within the reservoir was significant enough 
to drive diking and produce multiple fissure openings to the north 
and west of the caldera (22). The apparently modest change in pres-
sure estimated by the EnKF (~10 MPa) may be an appropriate order 
of magnitude and adequate to drive the 2018 eruption. However, 
significantly more research must be done to quantify pressure vari-
ations within a magma system to better understand the role of magma 
pressure in triggering dike initiation and eruptions. Until pressure 
variations can be better constrained, models of stress change 
and failure in the surrounding host rock, which can be linked 
more directly to observations of seismicity and deformation, pro-
vide an important approach for investigating eruption triggering 
mechanisms.

Forecasting the 26 June 2018 eruption
In many ways, the forecast provided by the EnKF 5 months ahead of 
the 26 June earthquake and eruption (27) can be chalked up to “ac-
cidental good fortune.” The forecast was based on rough estimates 
of physical properties, required the system to remain on the in-
flation trajectory determined on 26 January 2018, and relied on an 
assumption for what constitutes system failure. Specifically, system 
failure was flagged when Mohr-Coulomb failure calculated in the 
host rock was through-going, from the surface of the model to 
the magma chamber boundary (9), using a cohesion of 10 MPa 
that appeared to work well for the 2005 eruption of Sierra Negra 
(10) and a constant Young’s modulus. It is unclear whether the 
through-going failure flagged by the EnKF forecast was forecasting 
the potential of the 26 June earthquake or the eruption. We posit 
that the more important outcome is the success of the EnKF to 
quantify deformation, stress, and failure as indicators to track the 
evolution of the system. The apparently successful eruption forecast 
of Sierra Negra illustrates the potential for evaluating magma system 
stress evolution in real time using the EnKF approach. This frame-
work has transformative implications for forecasting volcanic unrest 
with higher fidelity in the future, which is particularly important in 
densely populated areas near active volcanoes.
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Fig. 5. Coulomb static stress transfer is calculated due to the 26 June 2018 
Mw 5.4 earthquake, strike = 248, dip = 70 to the north, rake = 90, and Young’s 
modulus = 50 GPa, assuming receiver faults with strike = 105, dip = 70, and 
rake = 90. (A) Cross section along x-x′ indicated on (B) through the assumed 
earthquake source fault (white line) and the location of fissure 1 (“F1”). The dashed 
black ellipse outlines the location of the pre-eruption forecast pressure source. The 
EnKF hindcast of Mohr-Coulomb failure (C = 1 MPa, gray outline) and tensile failure 
(green region) are shown for 26 June 2018. Dotted horizontal line indicates the 
2-km depth of the Coulomb stress change plotted in (B). (B) Map view of Coulomb 
static stress transfer calculation at 2-km depth. Star symbol indicates the center of 
the forecasted pressure source that extends to the dashed black outline. The white 
circle indicates the center of the hindcast source, with its full extent outlined by 
the white line.
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MATERIALS AND METHODS
FEM approach
Our numerical approach uses previously developed and bench-
marked thermomechanical FEM models (9). COMSOL Multiphys-
ics is used to calculate the stress, strain, and temperature variations 
because of a pressurized magma chamber in a 3D linear elastic 
space (Fig. 2A). A free surface is assumed at the top of the model 
space, and roller boundary conditions are applied on the side and 
base of the model. The magma chamber is represented by a pressur-
ized ellipsoid that is free to move in space and rotate in strike and 
dip (Fig. 2B). Model parameters and variables are provided in tables 
S1 and S2, respectively. The geometrical and spatial parameters de-
scribing the magma reservoir are varied by the EnKF analysis de-
scribed below.

The mechanical behavior of the model is governed by the quasi- 
static conservation of momentum

  ∇ ⋅  + b = 0  (1)

where  is the Cauchy stress tensor and b is the body force den-
sity vector.

The presented COMSOL models use the COMSOL Floating 
Network License for cluster computing, the Heat Transfer Module, 
and Structure Mechanics Module. EnKF results are plotted using 
Python, and the COMSOL MATLAB LiveLink is used for model 
visualization.

Thermal model for temperature-dependent hindcasts 
(Td and Tot)
A new steady-state thermal structure is calculated for each model in 
the EnKF ensemble for each time step (fig. S1A). The steady-state 
thermal structure is solved numerically by COMSOL from the 
steady-state heat conduction equation

  ∇ ⋅ (k ∇ T ) = − Q  (2)

where k is the thermal conductivity, T is temperature, and Q is the 
crustal volumetric heat production, assumed to be zero. A magma 
temperature of 1100°C is assumed along the reservoir boundary. 
A background geotherm of 30°C/km is assumed. Although volcanic 
systems are transient and unlikely to reach a steady-state thermal 
equilibrium, this provides an end-member starting point. A nTd, 
elastic hindcast is provided for comparison.

We are particularly interested in the impact of the thermal struc-
ture on the elastic properties of the host rock and the resultant model 
predictions. Hence, we have incorporated a temperature- and depth- 
dependent Young’s modulus (34)

    E  Td   =  E  b   −  E  b  (exp (     
T +  zT  geo  

 ─  T  m     )   − 1 ) * 0.5   (3)

where a far-field, depth-dependent Young’s modulus (Eb = − 6.9z2 − 
1.3 × 106z + 5 × 1010 Pa) is assumed in the brittle region of the 
model space (35), Tm is the magma reservoir temperature, and 
Tgeo is the geothermal gradient (fig. S1B). Equation 3 provides a 
smooth transition between the brittle and ductile Young’s mod-
ulus to minimize computational issues and mimic nature, which 
likely has a transition in material properties rather than a sharp  
boundary.

Failure estimation
Failure in the host rock surrounding a reservoir is critically im-
portant for determining the stability of the system and potential for 
eruption. We use a combination of two approaches to predict mag-
ma chamber stability. First, we investigate faulting and failure in the 
brittle portions of the model space using a Mohr-Coulomb fail-
ure criterion

   = C + f    n    (4)

where  is the shear stress at failure, C is cohesion, f is the internal 
friction coefficient, and n is the mean stress normal to the failure 
plane (36). Second, we investigate the evolution of tensile stresses, 
ts, which are defined as the least compressive stress along the 
magma chamber boundary. In application, as a magma system grows 
and inflates, the expansion results in flexure and uplift of the over-
lying roof, promoting faulting and brittle failure. The Andersonian 
fault orientations of the model elements in the predicted region of 
failure are tracked to evaluate the fault types predicted during mag-
ma system evolution (9, 26, 37, 38). Simultaneously, tensile stresses 
along the chamber boundary can result in mode I failure and dike 
initiation (26).

Ensemble Kalman filter
Model-data fusion strategies are critical for producing model fore-
casts of complex system behavior. We have adapted the EnKF (12), 
an ensemble-based MCMC sequential data assimilation approach 
to assimilate large geospatial data into multiphysics volcano FEMs 
(13, 14). The ensemble-based EnKF can be applied with FEMs and 
circumvents the linearity and computational issues inherent to oth-
er Kalman filtering approaches (13). In addition, the EnKF is highly 
parallelizable. The workflow (fig. S2) has been adapted for HPC us-
ing a handshake between Python and COMSOL Multiphysics. The 
HPC EnKF approach is highly scalable, and individual FEM models 
are distributed across compute nodes for swift, simultaneous calcu-
lation at each data assimilation time step. In practice, every time a 
new InSAR observation becomes available from Sierra Negra, the 
new data are assimilated to provide parameter updates for the mod-
els in the EnKF ensemble. The updated models are then propagated 
forward in time to provide updated forecasts of the volcanic system 
state. As more data, D, become available, the model errors are reduced 
and the forecasts are refined. Measurements and models are com-
bined in the EnKF analysis step to provide the analysis ensemble, Aa

   A   a  = A +  XH   T   (H X  H   T  +  C  d  )   
−1

 (D–H A)  (5)

where X is the ensemble covariance matrix, Cd is the measurement 
covariance matrix, and H is the model operator matrix (12–14).

For the Sierra Negra implementation, 240 COMSOL FEM models 
are calculated at each time step on a cutting-edge HPC system at the 
National Center for Supercomputing Applications. A COMSOL 
Cluster Sweep is used to distribute the parameter values estimated 
by the EnKF analysis step to produce 240 models, which are distrib-
uted across compute nodes and CPUs (central processing units). Be-
cause of the inherent overhead of the COMSOL software, 240 models 
provide an optimal speedup. In addition, previous testing has indi-
cated that as few as 100 ensembles provide a sufficient convergence 
for the EnKF approach (12). Future EnKF implantations with open 
source modeling approaches will allow for more flexibility.
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Coulomb static stress transfer
To investigate the static stress change resulting from the 26 June 2018 
Mw 5.4 earthquake, we use the USGS Coulomb 3.4 Coulomb static 
stress software (29, 30). The Coulomb stress change is defined as

  CFF =  +    f       n    (6)

where  is the change in shear stress (positive in the slip direction), 
f is the apparent friction coefficient, and n is the change in nor-
mal stress (positive indicates unclamping).

The fault plane solution for the 26 June 2018 was determined by 
seismic wave form and InSAR analysis (20). The scalar moment is 
estimated as 1.73 × 1024 dyne/cm, with a strike of 248°, dip of 65°, 
and rake of 90°. The location is thought to be along the southern 
trapdoor fault evidenced by a sinuous ridge in the Sierra Negra calde-
ra. The location is further corroborated by ground observations col-
lected after the event (20). We calculate the Coulomb stress change 
for receiver faults oriented with a strike of 105° and dip of 65°, the 
complementary orientation of faults on the opposite side of the 
Sierra Negra caldera.

InSAR data processing
To measure the surface deformation over the Sierra Negra calde-
ra, using MintPy software (https://github.com/insarlab/MintPy), 
we apply the small baseline InSAR time series analysis approach 
(39) to the Sentinel-1 descending track 128 subswath 1 dataset from 
13 December 2014 to 26 January 2018 (69 acquisitions) and from 
13 December 2014 to 16 June 2018 (98 descending and 42 ascending 
acquisitions) for the hindcasts. We generated a network of interfer-
ograms with five sequential connections for each acquisition using 
the stack Sentinel processor (40) within Jet Propulsion Laboratory/
CalTech’s InSAR Scientific Computing Environment (ISCE) software 
(41). We multilook each interferogram by 15 and 5 looks in range 
and azimuth direction, respectively, filter using a Goldstein filter with 
a strength of 0.2. We remove the topographic phase component using 
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model 
(DEM) [SRTMGL1, ~30 m, 1 arc sec with void filled (42)]. The inter-
ferograms are phase-unwrapped using the minimum cost flow 
method (43). We correct the displacement time series for the stratified 
tropospheric delay using the ERA-Interim weather reanalysis dataset 
(45) and for the topographic residual (46). Reliable pixels are se-
lected using a temporal coherence threshold of 0.7 (46).

It is computationally prohibitive to assimilate data from the entire 
InSAR database. Hence, a QuadTree algorithm based on root mean 
square error of the displacement values is applied to reduce the num-
ber of samples for each epoch of InSAR data from ~150,000 to ~500.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abm4261
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